|
|
Line 1: |
Line 1: |
| | | 148140632376406627518989611668150215261614869061837067878963231694600933 |
| ----- -------------------------------- ------- ----- ---- --------------
| | 849993554003556474875248189629946106929509682950292865506040281902897258 |
| rank description digits who year comment
| | 077559885013645133285510071798541654010677038815427843325391612172411659 |
| ----- -------------------------------- ------- ----- ---- --------------
| | 762208174489374709843472672487714266257922498063809931640858900122654966 |
| 1 2^57885161-1 17425170 G13 2013 Mersenne 48?? (**)
| | 315009575454179681230242469832850827116721023420395869501847224081346354 |
| 2 2^43112609-1 12978189 G10 2008 Mersenne 47?? (**)
| | 326229974074209434137371893926988909834876857017660473880996550832606000 |
| 3 2^42643801-1 12837064 G12 2009 Mersenne 46?? (**)
| | 138790016665784382466583007982067508290411550600959033060824480611644850 |
| 4 2^37156667-1 11185272 G11 2008 Mersenne 45? (**)
| | 116226530224176743295090167794350643723402890658271455698356652741566510 |
| 5 2^32582657-1 9808358 G9 2006 Mersenne 44? (**)
| | 504742380635171227313838599813434392971731751418398141517270829320382598 |
| 6 2^30402457-1 9152052 G9 2005 Mersenne 43? (**)
| | 431813850049090972577897795322906048066837686214165223501462361911853355 |
| 7 2^25964951-1 7816230 G8 2005 Mersenne 42 (**)
| | 561376228353129976062356148852360001177382524683067364378461509876726070 |
| 8 2^24036583-1 7235733 G7 2004 Mersenne 41 (**)
| | 567955958557645431973316877257574856238899417685309242709241934663755410 |
| 9 2^20996011-1 6320430 G6 2003 Mersenne 40 (**)
| | 200887338291637420719133692250043648453945236018912727241789011295088346 |
| 10 2^13466917-1 4053946 G5 2001 Mersenne 39 (**)
| | 210626108679887823431256579456564589649681808236383314451401084495381806 |
| 11 19249*2^13018586+1 3918990 SB10 2007 (**)
| | 586678855149748674996640763990979118717338496764412562721969300099968866 |
| 12 3*2^10829346+1 3259959 L3770 2014
| | 706934851963143340571673649120530347065731028644151208800464184742541292 |
| Divides GF(10829343,3), GF(10829345,5) (**)
| | 239822022514962706324294077063265971034975845699354695576123931371828193 |
| 13 475856^524288+1 2976633 L3230 2012 Generalized Fermat
| | 744990671921391377052134313811088035980239372139958640686035817800504905 |
| 14 356926^524288+1 2911151 L3209 2012 Generalized Fermat
| | 892213231595973590058534828325138934842940978342753201751791415598911821 |
| 15 341112^524288+1 2900832 L3184 2012
| | 683644912414370324017939648547535273153331200451308513609294377948273975 |
| Generalized Fermat (**)
| | 299239360518416039032743485731388257378064816996333428423125713449313540 |
| 16 27653*2^9167433+1 2759677 SB8 2005 (**)
| | 352617509319581722512455359603885676423726322699306791302965931423963066 |
| 17 90527*2^9162167+1 2758093 L1460 2010
| | 601450691938781531888690622631681485182821322987488040463742468010526705 |
| 18 75898^524288+1 2558647 p334 2011
| | 832037815749856595536703857243065259432425798065224597886570612091974489 |
| Generalized Fermat (**)
| | 322351027438350516292161174332164593206511008603434338962352573028964783 |
| 19 28433*2^7830457+1 2357207 SB7 2004
| | 052967861996382145623192457006920376733867110917050375990277367784375120 |
| 20 502573*2^7181987-1 2162000 L3964 2014
| | 363366467594438392021081154551103588995352151778607512636379011984485410 |
| 21 402539*2^7173024-1 2159301 L3961 2014
| | 563036060766350161921384887780422988462180339368683766471749979186263340 |
| 22 3*2^7033641+1 2117338 L2233 2011
| | 285633717156297354322639423375165558294223276893238613275148872212810041 |
| Divides GF(7033639,3) (**)
| | 221178474298357341531380014758477149399242744697335763497397313343654182 |
| 23 33661*2^7031232+1 2116617 SB11 2007 (**)
| | 563186197391812471906465493643210503780415825511732782320078277234766498 |
| 24 2^6972593-1 2098960 G4 1999 Mersenne 38 (**)
| | 596536486531333283714304342672369315380714010231276794410404599034372588 |
| 25 40597*2^6808509-1 2049571 L3749 2013
| | 414732990178105059139839856997816964443675326833770734111868984355879545 |
| 26 6679881*2^6679881+1 2010852 L917 2009 Cullen (**)
| | 817620682261060674803162520781040608831510232088199746972864674981147798 |
| 27 37*2^6660841-1 2005115 L3933 2014 (**)
| | 191270379591185756847093478956201320417650836145923458075939595986983365 |
| 28 304207*2^6643565-1 1999918 L3547 2013
| | 492740299414230289691886134628553860349239172629138820241159389798867222 |
| 29 398023*2^6418059-1 1932034 L3659 2013
| | 360210880152530876818560771552424483453152396562680643131930911478129210 |
| 30 1582137*2^6328550+1 1905090 L801 2009 Cullen (**)
| | 605125812392019456051155878481168106593832449260763648675536668186909888 |
| 31 3*2^6090515-1 1833429 L1353 2010 (**)
| | 200551856307870178963013655776409127072220888794675054973240525068918037 |
| 32 7*2^5775996+1 1738749 L3325 2012 (**)
| | 581630753326603711163447802881133465956520352581848156111031212326056767 |
| 33 9*2^5642513+1 1698567 L3432 2013 (**)
| | 859015365251546308641604648852893521895585176929280456152764259390495606 |
| 34 252191*2^5497878-1 1655032 L3183 2012 (**)
| | 996883078318488392773460878014323827953727071733187627385740046347550471 |
| 35 258317*2^5450519+1 1640776 g414 2008
| | 455524546493792766534291281175058075921773022355251073329708382656277730 |
| 36 773620^262144+1 1543643 L3118 2012
| | 300274181862903533207512780367184881553064911630344818387744950531404499 |
| Generalized Fermat (**)
| | 035101006726954884315542090708238251819770285744897906877712802067813756 |
| 37 51*2^5085142-1 1530782 L760 2014
| | 610879763016474407514845866789686912499463333712864075650706518912379823 |
| 38 3*2^5082306+1 1529928 L780 2009
| | 989994597747552892841857651510143606876773003506707621448703812433709195 |
| Divides GF(5082303,3), GF(5082305,5) (**)
| | 113174969698903465171064179969603842055643250460099640664309032941204493 |
| 39 676754^262144+1 1528413 L2975 2012
| | 696634029929023273483833532238616218908486698602949651675076213622834042 |
| Generalized Fermat (**)
| | 587542731354526362426694237444263675992462827462766128254718650460023811 |
| 40 5359*2^5054502+1 1521561 SB6 2003
| | 970187237014620025425395285261907192621564443518523885643828133861312945 |
| 41 13*2^4998362+1 1504659 L3917 2014
| | 882567190677867848322405377624138430662578942004198851532673023481191051 |
| 42 525094^262144+1 1499526 p338 2012
| | 840348831816771970210873528558021061811838301204837845359467095162356550 |
| Generalized Fermat (**)
| | 305461669329359564085706252145059561458687225753324133150638500783627182 |
| 43 265711*2^4858008+1 1462412 g414 2008
| | 419568464858461013822547594590693278159766617571353908536337062368714652 |
| 44 1271*2^4850526-1 1460157 L1828 2012
| | 409434414614187696139815558851561609283889809580760040750480462297094560 |
| 45 361658^262144+1 1457075 p332 2011
| | 708432520470499709791719595662198275165954042520182969423249128077283850 |
| Generalized Fermat (**)
| | 577930556027244956365713521640750344906419882981037265695906776929254578 |
| 46 2^4792057-2^2396029+1 1442553 L3839 2014
| | 881270453660391187071634241663306999502607526153954407739689164098261383 |
| Gaussian Mersenne norm 40? (**)
| | 016728820930305557122289023948512723537472157644539571378104975786864558 |
| 47 653*10^1435026-1 1435029 p355 2014
| | 760403325150337869580113361944626871062065526770928574489512377374730891 |
| 48 9*2^4683555-1 1409892 L1828 2012
| | 700885882777849709005297953019176299625877175573814048266825932263521755 |
| 49 11*2^4643238-1 1397755 L2484 2014
| | 718160183250425696132360225562141160120118468810616239956156385138191193 |
| 50 27*2^4583717-1 1379838 L2992 2014
| | 492999394372280864594801769821654948505192330612218309727591857719648403 |
| 51 121*2^4553899-1 1370863 L3023 2012 (**)
| | 302242692373654822721125911755021333209184262308725940424529552091907534 |
| 52 27*2^4542344-1 1367384 L1204 2014
| | 318916494759346288084268026716653909979846660224230118106519553771677014 |
| 53 145310^262144+1 1353265 p314 2011
| | 021264271759766935953697889631941101577493210752533779403686221585808325 |
| Generalized Fermat (**)
| | 559431468823970861010032213122880177397257863883778189276442801530974382 |
| 54 36772*6^1723287-1 1340983 L1301 2014
| | 882257658558300740753122455585762053231377954995448857985970140229531901 |
| 55 353159*2^4331116-1 1303802 L2408 2011 (**)
| | 911503717509700801265630347554353592008750335840728168185572317527943241 |
| 56 141941*2^4299438-1 1294265 L689 2011 (**)
| | 208056600421824649274289401789552050920468848498445344060539764781077157 |
| 57 15*2^4246384+1 1278291 L3432 2013
| | 342346712985535567437648984497044089444227538073996081437531172224227272 |
| Divides GF(4246381,6) (**)
| | 674718139796390430868669322733239188161196196770409851800981273705279521 |
| 58 3*2^4235414-1 1274988 L606 2008 (**)
| | 000751561873411245311604757929964461856799058963882490722942168442161258 |
| 59 109208*5^1816285+1 1269534 L3523 2014
| | 414473900899290955935020726061176968299042064942043439768628169117078565 |
| 60 191*2^4203426-1 1265360 L2484 2012
| | 054631349389984150201402359623675224317114340424101457915361975948242792 |
| 61 325918*5^1803339-1 1260486 L3567 2014
| | 141954961371004816035695269857109449449237448575966251101401581056982167 |
| 62 133778*5^1785689+1 1248149 L3903 2014
| | 056407070412567205118509878506945308507892358149914372440829950477377266 |
| 63 24032*5^1768249+1 1235958 L3925 2014
| | 470063388743199703173637048623467689828245323983218141860042107763858400 |
| 64 40734^262144+1 1208473 p309 2011
| | 336930177932868571007611751884139283317139371934777553791133962500227281 |
| Generalized Fermat (**)
| | 847993832820492010969652540591894524047100997759553221781958542521561534 |
| 65 9*2^4005979-1 1205921 L1828 2012
| | 991861139279593426785827018356468103785249378937458192230683271008354737 |
| 66 138172*5^1714207-1 1198185 L3904 2014
| | 084421443198729115187391383745189583759669927754292235182943169003860442 |
| 67 22478*5^1675150-1 1170884 L3903 2014
| | 411983023795278048758486049017330834425605048599350277141249374330694913 |
| 68 27*2^3855094-1 1160501 L3033 2012 (**)
| | 840472904849497340849515610030858307250361431106785256548461998875372774 |
| 69 24518^262144+1 1150678 g413 2008 Generalized Fermat
| | 786698869923707799562467601847928429353064014513733808584367695923540829 |
| 70 123547*2^3804809-1 1145367 L2371 2011 (**)
| | 488469485851597551623719154076210054082464437375149998595362508898383659 |
| 71 326834*5^1634978-1 1142807 L3523 2014
| | 055083479450626492468519271576020138010962717926428322320310190085999549 |
| 72 415267*2^3771929-1 1135470 L2373 2011 (**)
| | 895652332042077075220382803478038592110567089458191724737573894426594035 |
| 73 11*2^3771821+1 1135433 p286 2013 (**)
| | 947649936308315644557680590943885632049599442720006675871996015742509155 |
| 74 938237*2^3752950-1 1129757 L521 2007 Woodall (**)
| | 238754707581446596807350595305955474726739340822486570871609121181214445 |
| 75 207394*5^1612573-1 1127146 L3869 2014
| | 749388463982093191629171625720296194474485073514477642103719983978647541 |
| 76 104944*5^1610735-1 1125861 L3849 2014
| | 447261535465402996341158167040999082663037289998846156508378388045306121 |
| 77 2^3704053+2^1852027+1 1115032 L3839 2014
| | 799454318512648618651294913011362531308581550043971799642157712714344965 |
| Gaussian Mersenne norm 39? (**)
| | 730624148380434944506110583402019775991731353555881521696283108316649736 |
| 78 330286*5^1584399-1 1107453 L3523 2014
| | 377096277569018008231053441028876689254976771268535880297346631717505586 |
| 79 15*2^3668194-1 1104238 L3665 2013
| | 313560898823662027272737397133479950146478333776623618501423470526259787 |
| 80 65531*2^3629342-1 1092546 L2269 2011 (**)
| | 834380057970987260334946920176255665268382380038867689218954469765849888 |
| 81 113*2^3628034-1 1092150 L2484 2014
| | 497032595056010481345572314341290503903884181288807529148021468155913861 |
| 82 485767*2^3609357-1 1086531 L622 2008
| | 170178905409367268839163560809218432141079482758693858754828090015489110 |
| 83 35*2^3587843+1 1080050 L1979 2014
| | 839352244868206729561199694707476716905134148438929590009009400287855991 |
| Divides GF(3587841,5)
| | 683987377450396951721682454943047144452960369620310934448603326604321763 |
| 84 2*59^608685+1 1077892 g427 2014
| | 516266645305626093621697476110505722459085593539272375320808521825176182 |
| Divides Phi(59^608685,2)
| | 733038294676354737350859693935578831061557042294904023003131714668038938 |
| 85 35*2^3570777+1 1074913 L2891 2014 (**)
| | 122595263434830321460278252891927245342275565234566635965061384795794044 |
| 86 33*2^3570132+1 1074719 L2552 2014 (**)
| | 713995463128898111222913613635934913347917894612185371964014094480662674 |
| 87 5*2^3569154-1 1074424 L503 2009
| | 124333248045299608091433288091882744659070091634926063917123716715677264 |
| 88 22934*5^1536762-1 1074155 L3789 2014
| | 471161411796046518662964920959370655010703317821232903772412255636899277 |
| 89 Phi(3,3^1118781+1)/3 1067588 L3839 2014
| | 581615475353433557492484189846375230188063757017694314085016071667386941 |
| Generalized unique (**)
| | 966761173801673098170313912752220832614775549673474486276827741888207400 |
| 90 93*2^3544744+1 1067077 L1728 2014
| | 576498388228569105097183803888915030004947106942247104555423585092494685 |
| 91 178658*5^1525224-1 1066092 L3789 2014
| | 884446397708935004199276305233075030858068586810658050844350747208951175 |
| 92 1019*2^3536312-1 1064539 L1828 2012
| | 975905739757216888002377861074432971808032160050439701692881146934242379 |
| 93 2*10^1059002-1 1059003 L3432 2013 Near-repdigit
| | 398922046679202781895133244444812679612306076833173544279419886150835239 |
| 94 7*2^3511774+1 1057151 p236 2008
| | 450650423484533154201232671228110513414754478742351691765943188205925325 |
| Divides GF(3511773,6) (**)
| | 758310110339747777307592120923094793186231210776676982925866588872799269 |
| 95 428639*2^3506452-1 1055553 L2046 2011 (**)
| | 948822998198204470514258904036741696996869300013166754106220962894278164 |
| 96 2*23^774109+1 1054127 g427 2014
| | 984864562369302280467355596228456420169815795112738132626685528288592872 |
| Divides Phi(23^774109,2)
| | 231183547394226279332401743552050545829886697340603021129301360891133581 |
| 97 9*2^3497442+1 1052836 L1780 2012
| | 731028401220585049975118000497836594455141200384586262995256560410648428 |
| Generalized Fermat, divides GF(3497441,10) (**)
| | 745061885849679088014835938029381497456486460955293187481108457463571287 |
| 98 87*2^3496188+1 1052460 L1576 2014
| | 507948057547696925293873566030169555926760934685402354275620708458549495 |
| 99 51*2^3490971+1 1050889 L1823 2014 (**)
| | 092529016150804264315832037654845654473846162495856262517658122247393489 |
| 100 59912*5^1500861+1 1049062 L3772 2014
| | 218295980716892534336740147054360387062160467089978385416299982026248747 |
| 101 37292*5^1487989+1 1040065 L3553 2013
| | 499940701015135344256362054816297177571552628680061484315064204605833593 |
| 102 1273*2^3448551-1 1038121 L1828 2012
| | 686639592353560089512711016825211685295080425463808477261427040819695445 |
| 103 191249*2^3417696-1 1028835 L1949 2010 (**)
| | 772851155670889129374543530871691336533685023804547910255022288199031112 |
| 104 113*2^3409934-1 1026495 L2484 2014
| | 488694129989899697374300688409776879188733127517955749178846363486046280 |
| 105 59*2^3408416-1 1026038 L426 2010
| | 881095111438439092346654136052585983679417355858699282402985831891778334 |
| 106 67*2^3391385-1 1020911 L1959 2014
| | 880842942094422407029943318771641032076270945395055413262945388292704273 |
| 107 173198*5^1457792-1 1018959 L3720 2013
| | 675087980175668341764096987789904808952642925151519353282634513236607417 |
| 108 179*2^3371145+1 1014819 L3763 2014
| | 255419442219813848394909695961699207689479777656407744120859693338843971 |
| 109 81*2^3352924+1 1009333 L1728 2012
| | 833700789669976829734955055900483756554663083439999071722129683851119937 |
| Generalized Fermat (**)
| | 716877402059993101299831525145332769347012134360641515174819077475440511 |
| 110 1087*2^3336385-1 1004355 L1828 2012
| | 450006090857356717045319336119263015562386928276947567675000123744454905 |
| 111 193*2^3329782+1 1002367 L3460 2014
| | 358952918070495102218126480137765336755716005497582478279730650885910261 |
| Divides Fermat F(3329780)
| | 236400667576930390988419764892846601724636298182284305200221345241000524 |
| 112 129*2^3328805+1 1002073 L3859 2014 (**)
| | 527314584401088366858718228920589714062360776033232898304488424333972823 |
| 113 464253*2^3321908-1 1000000 L466 2013
| | 658687875199513977448918288337745096662794501581667360432672419879195646 |
| 114 191273*2^3321908-1 1000000 L466 2013
| | 848354052618545678704294227812670138450361659955083076290115940336625892 |
| 115 3139*2^3321905-1 999997 L185 2008
| | 070941715310956114178755571087844187301517009546013330283818472213920353 |
| 116 4847*2^3321063+1 999744 SB9 2005
| | 608689862663574002473730385204549180356399356106679191302709155535248321 |
| 117 49*2^3309087-1 996137 L1959 2013
| | 124416893423308967497457803038890022721718426559118335331581189082986652 |
| 118 245114*5^1424104-1 995412 L3686 2013
| | 672889999167683140359520287259183940471617807150332325151444864499446098 |
| 119 175124*5^1422646-1 994393 L3686 2013
| | 933650551238375639234439518090959127680564669337122893448216890646026483 |
| 120 5*2^3264650-1 982759 L384 2013
| | 400756065414698836655619809215058971790050249101240662123479143749989007 |
| 121 223*2^3264459-1 982703 L1884 2012
| | 470240274089355388214769134211790768037267422231072586552248317013038054 |
| 122 9*2^3259381-1 981173 L1828 2011
| | 219894369477626956803220594848302999488682543026414701929980139454988506 |
| 123 33*2^3242126-1 975979 L3345 2014
| | 137160405329892701207963335121231170992529326585842338260965776928861581 |
| 124 39*2^3240990+1 975637 L3432 2014
| | 461934479896010381951988595170506202438933222138961068988863029320446041 |
| 125 211195*2^3224974+1 970820 L2121 2013
| | 614467294879788446402139390826000191864169235046295082663214965110477059 |
| 126 94373*2^3206717+1 965323 L2785 2013
| | 696774309905659896429288600824570147734941082291634849161933249271840763 |
| 127 113983*2^3201175-1 963655 L613 2008
| | 359758418099783576146626555251056500696866989954571958487627997757100354 |
| 128 33*2^3176269+1 956154 L3432 2013
| | 308087771490371777931403912473331112658832662211748883109790716753721208 |
| 129 1087*2^3164677-1 952666 L1828 2012
| | 509545211147267710874128817653156073704096250031353537711244862015284021 |
| 130 15*2^3162659+1 952057 p286 2012 (**)
| | 605388668789573499985052965262362685442843440338060710525325401353326081 |
| 131 19*2^3155009-1 949754 L1828 2012
| | 461788205763602873023914953827152780305201382598374126251742070072068282 |
| 132 69*2^3140225-1 945304 L3764 2014
| | 597826442181151892005600686500482123635617515534783422554457689768511409 |
| 133 3*2^3136255-1 944108 L256 2007
| | 055388373933196666801052674570378920145604044668595287630457956090917324 |
| 134 27777*2^3111027+1 936517 L2777 2014
| | 070922851897995248867610177676878289767814706438999073220578453535474746 |
| Generalized Cullen (**)
| | 513695370752360252345047080130610038998320776317999121994309106053264828 |
| 135 1019*2^3103680-1 934304 L1828 2012
| | 277464951865125572663374736534357962474255721075681101324520070082170348 |
| 136 256612*5^1335485-1 933470 L259 2013
| | 385320846166513408415494456213031932976705099700834118219045495546654544 |
| 137 69*2^3097340-1 932395 L3764 2014
| | 915140791816729074161819578623764477278639487912484435511659029987771742 |
| 138 5*2^3090860-1 930443 L1862 2012
| | 295732370991586945701482124498727084193119200544147413470786327379927145 |
| 139 60849*2^3067914+1 923539 L591 2014
| | 912637556997877730819573025450739000127697020411747638983612091575056044 |
| 140 21*2^3065701+1 922870 p286 2012 (**)
| | 778318188384617233618525306958828030699906112488793149361859902081567245 |
| 141 43*2^3063674+1 922260 L3432 2013
| | 345727024515988583398979591346956439518551526081848627201692705708122539 |
| 142 5*2^3059698-1 921062 L503 2008
| | 014459188122108922904741010557761340528524601810075052329336919509002458 |
| 143 383731*2^3021377-1 909531 L466 2011
| | 509499359121427814287630210670703814325993202150646833888799348423089601 |
| 144 46821*2^3021380-374567 909531 p363 2013 (**)
| | 802461009531777700214836406679387248428627524535021868924792462970898288 |
| 145 2^3021377-1 909526 G3 1998 Mersenne 37 (**)
| | 729511270087457967073218118872514802832276367088484736003405799755683924 |
| 146 7*2^3015762+1 907836 g279 2008 (**)
| | 753581914032262303961969969728831377939214518864554384320206864250852925 |
| 147 268514*5^1292240-1 903243 L3562 2013
| | 082009372316262881867129706785188704552761297981628274162082728425454189 |
| 148 7*10^902708+1 902709 p342 2013
| | 652919978189720103662856415078369072280226031805493921682958879902758317 |
| 149 43*2^2994958+1 901574 L3222 2013
| | 232810779046297689491123060469573633098350543919818923620116240387221558 |
| 150 1095*2^2992587-1 900862 L1828 2011
| | 171976400638140642748378800193767415363018363472695401585371206011538641 |
| 151 15*2^2988834+1 899730 p286 2012 (**)
| | 480396355317216506642135955818574741580648506315144330185231819350458870 |
| 152 39*2^2978894+1 896739 L2719 2013
| | 223263209263358527642686359433205006717537022095352664947565817945484530 |
| 153 4348099*2^2976221-1 895939 L466 2008
| | 732972665285170362704244896112223948568188948756047617029132308449633930 |
| 154 18976*2^2976221-18975 895937 p373 2014
| | 200791944737696649594736992606604032118257117058073275682852703728838251 |
| 155 2^2976221-1 895932 G2 1997 Mersenne 36 (**)
| | 459482803422221029970089920577666017778526226103312632760725204629666795 |
| 156 46425*2^2971203+1 894426 L2777 2014
| | 282957464127694426651797513072942211679994876647295317297384337835291688 |
| Generalized Cullen (**)
| | 408932578421267355797168280568391440424591312370204480409379050964164948 |
| 157 198677*2^2950515+1 888199 L2121 2012
| | 747192401351528964797685080483377324653119622658768667222632060160078512 |
| 158 17*2^2946584-1 887012 L3519 2013
| | 314743052334830792889869037375359818160334965763164145789727995041089437 |
| 159 33*2^2939063-1 884748 L3345 2013
| | 026080204262073276441790841858158660856944119823742575733505456885509366 |
| 160 7019*10^881309-1 881313 L3564 2013
| | 501192511092119170477924278191281669615545961887197449413378179192743501 |
| 161 25*2^2927222+1 881184 L1935 2013
| | 969703144491578715967834263542558438441447374591336811805276353822399819 |
| Generalized Fermat (**)
| | 295432942461498508480899134017100469456596322611189912012827608639256244 |
| 162 97366*5^1259955-1 880676 L3567 2013
| | 752688052709603345943739533705906371204333755207663790742586034211382695 |
| 163 243944*5^1258576-1 879713 L3566 2013
| | 766796783676460186538116311035704170704585915345056630720841752449549635 |
| 164 7*2^2915954+1 877791 g279 2008
| | 901655942467795993021771625550119197050204694021880998624206288244053933 |
| Divides GF(2915953,12) [g322] (**)
| | 025658149411025180695856800547135287549091770069470392403405905019747390 |
| 165 427194*113^427194+1 877069 p310 2012
| | 120796436921890220267631881626546678034557481206482873038991877940434261 |
| Generalized Cullen (**)
| | 926299192812992765752574125291172141372943276358583613408908657959696127 |
| 166 63*2^2898957+1 872675 L3262 2013 (**)
| | 882193897822170744045170973022225538771100056724761457492623982268766351 |
| 167 11*2^2897409+1 872209 L2973 2013
| | 436929800016900192486169217437229615858910325278435305261577126584873527 |
| Divides GF(2897408,3) (**)
| | 872532848106213422490097673271857410400640949705007663065025418852332812 |
| 168 51*2^2881227+1 867338 L3512 2013
| | 348094498785355576627477087217945745083540520840688194765799923031875898 |
| 169 41*2^2872058-1 864578 L2484 2013
| | 518055513642311635337324757745725951067617887198247877432644340902545829 |
| 170 1207*2^2861901-1 861522 L1828 2011
| | 766786496904575310901768680229956406827564828363908868667482275656926370 |
| 171 222361*2^2854840+1 859398 g403 2006
| | 654694202866911869253826979050905413329117868346570290351092616350287466 |
| 172 95*2^2837909+1 854298 L3539 2013
| | 588184890031494038258635908112540116899103154540872546741117159302271258 |
| 173 84466*5^1215373-1 849515 L3562 2013
| | 199267225216286409431143515881438336628546010679885011721008640407262044 |
| 174 97*2^2820650+1 849103 L2163 2013
| | 948396049883542803139298774134121484394767570210911834270788919005745190 |
| 175 107*2^2819922-1 848884 L2484 2013
| | 264131862586662788889063249235969691252758834279327189789079501298965393 |
| 176 97*2^2818306+1 848397 L3262 2013
| | 997457684294715353508442434782650597986876654857755094199005739791777885 |
| 177 177*2^2816050+1 847718 L129 2012
| | 939289003090612284831341866700532970676021251354994894880920293091682054 |
| 178 96*10^846519-1 846521 L2425 2011 Near-repdigit
| | 418341316361365723607404716788031238126013426538414199588442839501050462 |
| 179 63*2^2807130+1 845033 L3262 2013 (**)
| | 748387317678703991913897140286530397510471454149540870810421620745936897 |
| 180 150344*5^1205508-1 842620 L3547 2013
| | 961871496935228802025973658677598852279746332003044938425141354737485822 |
| 181 400254*127^400254+1 842062 g407 2013 Generalized Cullen
| | 629899100559138057755150982100306138451310713056106276142961082041810880 |
| 182 43*2^2795582+1 841556 L2842 2013 (**)
| | 006783014216658389925923400596408840903116875246796127406166876487375790 |
| 183 15*2^2785940+1 838653 p286 2012 (**)
| | 637693794623011990534585267708180065565518816270873693668986544736671981 |
| 184 57*2^2765963+1 832640 L3262 2013
| | 575625174254725559125164876434648857005119807654960924487312596947901349 |
| 185 77*2^2762047+1 831461 L3430 2013
| | 682210540524707496770060675449912651641743023003083817639219997562831177 |
| 186 7*10^830865+1 830866 p342 2014
| | 565081161229434198529480589821641099132638615485935214443896314712111033 |
| 187 57*2^2747499+1 827082 L3514 2013
| | 770963344109364942536930019251184727727649799124444372996187833774697526 |
| Divides Fermat F(2747497)
| | 618537764267474058914877366664622908872544797569180009445579303862485689 |
| 188 17*2^2721830-1 819354 p279 2010
| | 389936397654004242404894587242382307691078633011640278969639564630917841 |
| 189 165*2^2717378-1 818015 L2055 2012
| | 543922490018920652304742040196139622253526901686317874752205149432469222 |
| 190 45*2^2711732+1 816315 L1349 2012
| | 532611366969581211974676164241939595956192853891810074440648580292172262 |
| 191 39*2^2705367+1 814399 L1576 2013
| | 098314523857901364918889609840582718926455722478410494701280792973468171 |
| Divides GF(2705360,3)
| | 705855341293694255312508023314963495346499285145318985169071640427493265 |
| 192 11*2^2691961+1 810363 p286 2013
| | 419365092950406731895263265546807888969051445979291611127792296281483732 |
| Divides GF(2691960,12) (**)
| | 019613629066267865843485346565830686418844682214105211936327848610976129 |
| 193 1372930^131072+1 804474 g236 2003 Generalized Fermat
| | 707241928432248769433168521836542162900577702663289395557875819486867917 |
| 194 1361244^131072+1 803988 g236 2004 Generalized Fermat
| | 522474961507443031952798699661683317972320536432503239349457285325516722 |
| 195 256*11^771408+1 803342 L3802 2014 Generalized Fermat
| | 947642431568360563610734945859179965865411609474823235242375593159689993 |
| 196 1396*5^1146713-1 801522 L3547 2013
| | 723714600627703362473616166841298081351233683430738264797302464004042068 |
| 197 69*2^2649939-1 797713 L3764 2014
| | 563786594067176112716030961829982243701830463949983416506261959906110222 |
| 198 1176694^131072+1 795695 g236 2003 Generalized Fermat
| | 327793932421744369569054532348414453420883738809794664535359007716236089 |
| 199 13*2^2642943-1 795607 L1862 2012
| | 209711171290323566802166668067768677488342784804341711307429369579528308 |
| 200 342673*2^2639439-1 794556 L53 2007
| | 521222366788931977069366200563697024023389849232099969324321549982486081 |
| 201 92182*5^1135262+1 793520 L3547 2013
| | 306000093822183472289094360690146649893663452579644287259504028929630776 |
| 202 87*2^2630468+1 791852 L3262 2013
| | 982159322430338851827635725874047819566203122843842215305642900655950590 |
| 203 17152*5^1131205-1 790683 L3552 2013
| | 820057446844669949635658757042668042048090649799869139577700271577668584 |
| 204 1063730^131072+1 789949 g260 2013 Generalized Fermat
| | 343036627541885746076428678493365647566350145265393311764112273938765757 |
| 205 1243*2^2623707-1 789818 L1828 2011
| | 430867594068552863665655423979222331996932916748695594661496173308169816 |
| 206 87*2^2609046+1 785404 L2520 2013
| | 614195675865672918068099237899779722955539852717543892359074871445058475 |
| 207 329584*5^1122935-1 784904 L3553 2013
| | 821223505103193541178600352692911537839859790788347240954227155991703181 |
| 208 13*2^2606075-1 784508 L1862 2011
| | 776687504053768680502186571302265622252953549988120056667424472818106973 |
| 209 25*2^2583690+1 777770 L3249 2013 Generalized Fermat
| | 733945600277982318213956773880243457819502831194290048646827983972930510 |
| 210 334310*211^334310-1 777037 p350 2012 Generalized Woodall
| | 390348567537959780217651222179826846853995966772863567970074824494053058 |
| 211 51*2^2578652+1 776254 L3262 2013
| | 177635002778610057447867028199717462238669206804781845397074706025486111 |
| 212 75*2^2562382-1 771356 L2055 2011
| | 884122874380127016837493175312631666054324830168597402369534493578791500 |
| 213 147559*2^2562218+1 771310 L764 2012
| | 136018353261108865073717044779758646955962989668863197456341179641113847 |
| 214 404*12^714558+1 771141 L1471 2011
| | 647265283165029289231428856126043902687746901811189840899544851933317920 |
| 215 9*2^2543551+1 765687 L1204 2011
| | 773950066902959880445783497867584375490399577481178362758625612596448796 |
| Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6),
| | 567802576159029384890298161488510026160046156874275038931235415300181143 |
| GF(2543549,12) (**)
| | 003720129527491905681715478449118640034984929927601015094386040932329665 |
| 216 689186^131072+1 765243 g429 2013 Generalized Fermat
| | 211734554885171653405184481311523868180012412709573380703015019277237341 |
| 217 123287*2^2538167+1 764070 L3054 2012
| | 459787740125370439268203259009051422736141195565670060974974094065447772 |
| 218 305716*5^1093095-1 764047 L3547 2013
| | 795196991963034215282136913762134517069116228659476992452433085352200710 |
| 219 83*2^2537641+1 763908 L1300 2013
| | 746459642358629188660454381000707723324078306998134494784902719366780421 |
| 220 87*2^2518122-1 758033 L2484 2014
| | 778325339397909003440929406114139300237656402549291718680636312526267970 |
| 221 33*2^2513872-1 756753 L3345 2013
| | 773733977291826234051741830713737471066220831590750372280790283175350443 |
| 222 45*2^2507894+1 754953 L1349 2012 (**)
| | 726913811255382928350491092030184459072501513874808926137260116047545645 |
| 223 130484*5^1080012-1 754902 L3547 2013
| | 401411195495148113715307766137930776642160422451595327727291958378392722 |
| 224 572186^131072+1 754652 g0 2004 Generalized Fermat
| | 762170815224987183077756110997952602700578206787546294249108664609028971 |
| 225 165*2^2500130-1 752617 L2055 2011
| | 716064045152961042565455332071660844821902574156969228007626259745159745 |
| 226 33*2^2499883-1 752542 L3345 2013
| | 576529673996938870745471169578735958296557053821584722591938373635629129 |
| 227 57*2^2492031+1 750178 L1230 2013
| | 121075515151719802500464157382365257893824430005624918378142361084860299 |
| 228 3*2^2478785+1 746190 g245 2003
| | 970062507957800336683571618531223328768330595755201648500608687114962722 |
| Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6),
| | 987928389823588733220326563460334683478139680150691637004150865459164854 |
| GF(2478782,12)
| | 837255916506733500944804308193206774887000627258417670345318027868657281 |
| 229 22*30^504814-1 745673 p355 2014
| | 770934828721788258312127793122104810752657030330938418543468295865576224 |
| 230 11*2^2476839+1 745604 L2691 2011 (**)
| | 366759724028155030450297925439528784688013981886397548962489740748979563 |
| 231 1061*2^2474282-1 744837 L1828 2012
| | 980307190205257676850590191787056308654603104347605259998967859963273352 |
| 232 81*2^2468789+1 743182 g418 2009
| | 894566301919289859755690147261978906211988343145338669931181088046156334 |
| 233 55154*5^1063213+1 743159 L3543 2013
| | 939830067658531961431713509119357188743314969064106783281713929146818949 |
| 234 26773*2^2465343-1 742147 L197 2006
| | 218233406369328311931459223238729472042074810419385415805726149372345663 |
| 235 103*2^2462567-1 741309 L2484 2014
| | 971994569716164227104261845765760055778810842740338944946616973334098376 |
| 236 5*2^2460482-1 740680 L503 2008
| | 211249923240223050704355051484062256066083997419259509599588173995044968 |
| 237 41676*7^875197-1 739632 L2777 2012
| | 322415028306178858602864084324150808986934421367592094341604352201955580 |
| Generalized Woodall (**)
| | 516528568225194320305993052529673627411855176901371219817775760655914706 |
| 238 65*2^2450614-1 737711 L2074 2014
| | 998398857585246251667316156840082755635993005984043879743665696731854713 |
| 239 75*2^2446050+1 736337 L3035 2013 (**)
| | 262812915135724513252516764624472184438918933873820767358576015268192797 |
| 240 115*26^520277-1 736181 L1471 2014
| | 533504326084647445716874033259789655824320197363032714516080484332566770 |
| 241 114986*5^1052966-1 735997 L3528 2013
| | 160534432021559029314257404911266227081950834918059598184663643649808653 |
| 242 386892^131072+1 732377 p259 2009 Generalized Fermat
| | 309183472634157522172134949830767386817029893444710643034597984889254604 |
| 243 69*2^2428251-1 730979 L384 2014
| | 663247146547693386402376761051028076152550865506651426612850540356757648 |
| 244 23*2^2425641+1 730193 L2675 2011 (**)
| | 801489753727679379740495514630994497611716045934875668466593778442036396 |
| 245 69*2^2410035-1 725495 L2074 2013
| | 562361110892699500360296417082406121620678750608632439576278466013572006 |
| 246 243686*5^1036954-1 724806 L3549 2013
| | 730464563989313975492179887125460282128768507168594184869613980161124586 |
| 247 15*2^2393365+1 720476 L1349 2010 (**)
| | 700717076623668544683450757519135316130539067466830391330570864268912618 |
| 248 273*2^2388104+1 718894 L3668 2014
| | 371318596645561855606922486743583252169578130585171731587830230859699767 |
| 249 99*2^2383846+1 717612 L1780 2013 (**)
| | 104958905108747892063873108957728253536746937687047277419849799972737853 |
| 250 737*2^2382804-1 717299 L191 2007
| | 948460160008175366187306780078292466270497156817141734032845524845038351 |
| 251 111*2^2382772+1 717288 L3810 2014
| | 964976705119986118051672747920023213834151508843217958242179129737443829 |
| 252 61*2^2381887-1 717022 L2432 2012
| | 557428105157171236812989303748258890174993123228485667662553248833584966 |
| 253 147*2^2375995+1 715248 L1130 2014 (**)
| | 212556998536093393914054090753128627619004827621747737159475021071124544 |
| 254 1117*2^2373977-1 714642 L1828 2012
| | 170597086472734811931236465652120703210901294370394630963876149316012492 |
| 255 99*2^2370390+1 713561 L1204 2013
| | 621728853740486519168294848988638068057691025504257288602506087560360192 |
| 256 125*2^2369461+1 713281 L3035 2014
| | 293907399160454888704390764804803666991013518119787098112960819434119869 |
| 257 1183953*2^2367907-1 712818 L447 2007 Woodall (**)
| | 176388470983137981955293014235880320022140460231694334566606955330729186 |
| 258 "57671892869766803925...(712708 other digits)...06520121133805600769"
| | 973684891527783844907389895218654813263890560650391703404520337768613534 |
| 712748 p360 2013
| | 292687532101543903873494733558880235063844786610931490064205913985909761 |
| 259 119878*5^1019645-1 712707 L3528 2013
| | 452446805691142617445744119079073848638249403732078228084791645858664348 |
| 260 150209!+1 712355 p3 2011 Factorial
| | 952826204483619373669872530039565629495786174127195338766878196313997226 |
| 261 281*2^2363327+1 711435 L1741 2014
| | 614286048694550165711207167787124855183876354409336254483889804993359725 |
| 262 2683*2^2360743-1 710658 L1959 2012
| | 029276335363226507747714640488703724170790583553180611312909973045327853 |
| 263 155*2^2357111+1 709564 L3975 2014 (**)
| | 517039258706884566689369274470462147116193219730605954657300975272565452 |
| 264 33706*6^910462+1 708482 L587 2014
| | 858844048088385870074849456346251479318142799336239162618433020978774633 |
| 265 179*2^2352291+1 708113 L1741 2014
| | 922152354303833322600405664932430048259793598048822045887809251290469580 |
| 266 45*2^2347187+1 706576 L1349 2012 (**)
| | 089111918562322111077495567207232199770202426987605907897633878913597464 |
| 267 127*2^2346377-1 706332 L282 2009
| | 199262329039233239461347358754100212007821312312473420936245193152928279 |
| 268 33*2^2345001+1 705918 L2322 2013 (**)
| | 726906729675386675713796158914391313978917287679351011082826690500222948 |
| 269 83*2^2342345+1 705119 L2626 2013
| | 195070079118052902304059393317365030721529442137636589437655511821028984 |
| 270 277*2^2340182+1 704468 L1158 2014
| | 475777363139402391766472276122507482332966786882798991135539005300683011 |
| 271 159*2^2339566+1 704282 L3035 2014
| | 931955100274673935962564542063941434323743362679282058857566005147841901 |
| 272 275293*2^2335007-1 702913 L193 2006
| | 184850734595720441022618805399427732075661255928030063124032351450807678 |
| 273 228188^131072+1 702323 g124 2010 Generalized Fermat
| | 002709387504520104974407910643274512942457321347976382214940074857070322 |
| 274 147855!-1 700177 p362 2013 Factorial
| | 667844775725189831222382020949286184886925279970240503685065030726254145 |
| 275 15*2^2323205-1 699356 L2484 2011
| | 809803096807200771427693484051701608166510233002113932296140893596237377 |
| 276 165*2^2319575+1 698264 L2627 2014
| | 240412149707358597528349899402286940992518235800550672311045921932401265 |
| 277 125098*6^896696+1 697771 L587 2014
| | 415592453509401202347262276624814945745036622179897366691647142289879559 |
| 278 65536*5^997872+1 697488 L3802 2014 Generalized Fermat
| | 382463300252307854120706915520748013719232773630122069264852199316705935 |
| 279 1983*366^271591-1 696222 L2054 2012
| | 556088976510584943522946396862901533707846013527020666206569374853937740 |
| 280 3*2^2312734-1 696203 L158 2005
| | 694230205599401612159969321591951922673741285074988713879782210447460478 |
| 281 450457*2^2307905-1 694755 L172 2006
| | 319467836693118693623110063655385257445514226395559420720249833047100684 |
| 282 189*2^2299959+1 692359 L2627 2014
| | 510487850999231754224674128144699466359361809912487788874163118789421671 |
| 283 1087*2^2293345-1 690369 L1828 2011
| | 274859894746134930670914802406970474499752665144568044279679242149233151 |
| 284 97768*5^987383-1 690157 L1016 2013
| | 067073773829589438744375644802710497133881972903888560276769777612823757 |
| 285 3*2^2291610+1 689844 L753 2008
| | 630579538946632784602173757207347688103470298423259422312768207819937894 |
| Divides GF(2291607,3), GF(2291609,5) (**)
| | 799857167815732991149665279808049574365725530825806579525812231908727738 |
| 286 109*2^2280194+1 686409 L2520 2014
| | 084837092861663485643150803793612514178408688825461600259238609205848954 |
| 287 105*2^2280078-1 686374 L2444 2014
| | 614729356986816495074750535770000704768990814210673641840027889046279884 |
| 288 155877*2^2273465-1 684387 L541 2014
| | 550796999061935987584456870463272943827442067453258144395479397680888399 |
| 289 2*11171^168429+1 681817 g427 2014
| | 581721204392193523542968128935298640271934519835154104782472916994115614 |
| Divides Phi(11171^168429,2)
| | 050925361006917459587581571997913883819793714859754756567095287611322128 |
| 290 217*2^2264546+1 681699 L3179 2014 (**)
| | 262502497330109659815460654288025346242499370855327909725440931261476267 |
| 291 93*2^2263894+1 681502 L2826 2013 (**)
| | 132063521276435403572933444020987529579539617455315343327021294469468274 |
| 292 217499*28^470508-1 680905 p366 2013
| | 922484762546703592197618613759204353217974023342749056831249102638949932 |
| 293 129*2^2255199+1 678885 L3049 2014 (**)
| | 401807960461348571455667845600778140849124173498561219282116148526417046 |
| 294 65*2^2250637+1 677512 L3487 2013
| | 846754662383403641560131058051932341241203606723244377444179224354421802 |
| 295 187*2^2249974+1 677312 L2322 2014
| | 037040011025285864189841674303758051660592963134871473033557895640497561 |
| 296 141*2^2249967+1 677310 L3877 2014
| | 863056461493310688593776051587124114944072239255415924664617732245935206 |
| 297 221*2^2248363+1 676828 L1130 2014
| | 393684777286785679742391864001483768937653272824584709683433819292434248 |
| 298 374565*2^2247391+1 676538 L3532 2013
| | 390186756296805261583812616030066217373205201177881575143163451033612953 |
| Generalized Cullen (**)
| | 948424920742478642982005071448617724200535504928684706185256326795987180 |
| 299 197*2^2244347+1 675619 L1129 2014
| | 598497309349079225881568425622983469424658994432841560988443830212620179 |
| 300 35*2^2241049+1 674625 L2742 2013 (**)
| | 117119307977798038601891455759181247896735729461388818109425625857145565 |
| 301 831*2^2235253+1 672882 L3432 2013
| | 038978337346537081812887605401251365306964874120597547261554289574984447 |
| 302 185*2^2235003+1 672806 L2322 2014
| | 558454971102520969218286593681505589494879666515991131022675325362839146 |
| 303 103*2^2234536+1 672665 L3865 2014
| | 311022521655455171327800776770957749121755388228081833098999538202438087 |
| 304 267*2^2233376+1 672316 L1792 2014
| | 479942387337778819787775617576988334827806335596271343799361755312273190 |
| 305 103*2^2232551-1 672067 L2484 2013
| | 554447671429914890605793182263307339984911474228053828112178032840541939 |
| 306 11*2^2230369+1 671410 L2561 2011
| | 189548484865871994977546030762810278091066418336768213690020901372903012 |
| Divides GF(2230368,3) (**)
| | 471746433497742848426881065298814400147025995814683619614806819525497492 |
| 307 130816^131072+1 670651 g308 2003 Generalized Fermat
| | 203259570636608440623267496205888064039153662641376275350593003923918793 |
| 308 213*2^2226329+1 670195 L2125 2014 (**)
| | 897966616363256560285771598878942463471308885921866108058299828421064163 |
| 309 84363*2^2222321+1 668991 L541 2014
| | 956480557550404242525846990650355350841477396004423598156934806249819768 |
| 310 27*2^2218064+1 667706 L690 2009 (**)
| | 922766750273062233729788060893564355041959900003998876480111120723338124 |
| 311 67*2^2215581-1 666959 L268 2010
| | 322377692095323532585618797167793207442064184913983412220864158377329832 |
| 312 33*2^2215291-1 666871 L3345 2013
| | 307759644465240806413650463647780052782141136174236623977196301793866409 |
| 313 157533*2^2214598-1 666666 L3494 2013
| | 673684002391854615336875441149850828356687383893146319623061016164021351 |
| 314 33*2^2212971-1 666173 L3345 2013
| | 958793184699697858925322586991187423942816277761681263868975567002041212 |
| 315 101*2^2212769+1 666112 L1741 2014
| | 753263832247179408654872365932713928756907988887472113557464016129072387 |
| 316 3*10^665829+1 665830 p300 2012
| | 156662569170138262542923940931005215795505940698414158975199257733465057 |
| 317 165*2^2207550-1 664541 L2055 2011
| | 306274124252964140882809059803156048378373428551877678755054338180267412 |
| 318 19*2^2206266+1 664154 p189 2006 (**)
| | 527291743899151366667430110898898254180343658659467569998155030906579137 |
| 319 2*179^294739+1 664004 g424 2011
| | 406005863111514898965833710900493415045089733596084757356367824239202372 |
| Divides Phi(179^294739,2) (**)
| | 413303342823986824735858551024594288749522097708225677857636163089581726 |
| 320 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique
| | 816065373276898497048362868373874842012309414783652166425664865886605011 |
| 321 173*2^2199301+1 662058 L1204 2014
| | 034362459997998902083857132266389040554454949764050223576664779971699817 |
| 322 5077*2^2198565-1 661838 L251 2008
| | 276831764317149053461242848154436502260312910641398867739699818067057978 |
| 323 114487*2^2198389-1 661787 L179 2006
| | 247322773540200431492282198396276458712339597644942209525843168610358829 |
| 324 1035*2^2197489+1 661514 L2517 2014
| | 778215631788928255519074888875867161014824948950272535920816677980196083 |
| 325 903*2^2197294+1 661455 L2322 2014
| | 564967941122200935572318147849641441020228858501861627793262603252462486 |
| 326 404882*43^404882-1 661368 p310 2011
| | 129116822283115065737136834693731954883173094128583279898430904980673291 |
| Generalized Woodall (**)
| | 286268717267263158109539907599530394736252095953968385204754085447109242 |
| 327 256*3^1384608+1 660629 L3802 2014 Generalized Fermat
| | 667328883972614249584880873197714282160091869530120768016293027997710737 |
| 328 2*10271^164621+1 660397 g427 2014
| | 595971959211417528622087683107185373473070987410637426381810916081588288 |
| Divides Phi(10271^164621,2)
| | 147942011682573098592736858217522868193827974779111943757805452917001906 |
| 329 1073*2^2193069+1 660183 L2487 2014
| | 154572856471525467010366337129200049639166061861890943359926286464671314 |
| 330 819*2^2190853+1 659516 L3234 2014
| | 794344618887205880734943978823285779342377869668914737725899749180263440 |
| 331 1179*2^2189870+1 659220 L2517 2014
| | 237950620688476550708992811472531972494445352438287035574034561311223426 |
| 332 269*2^2189235+1 659028 L1204 2014
| | 428920947308031238571466117755353298465249904254094174080054799225634448 |
| 333 39*2^2188855+1 658913 p286 2013 (**)
| | 971938525883502796371789477039793223932318130976186673048518409114958841 |
| 334 433*2^2188076+1 658680 L3855 2014
| | 377673921648343586950561252441427148664496898164192949183340802114982293 |
| 335 815*2^2185439+1 657886 L3035 2014
| | 767958861008982232154903759240525860624207221487447779076069911167991158 |
| 336 249*2^2185003+1 657754 L1300 2014
| | 007554441367470060749251131963568087668264552631509870728872937236288172 |
| 337 585*2^2184510+1 657606 L3838 2014
| | 143925289499651278202958108702915395750315156660618449103960250397818010 |
| 338 1033*2^2183858+1 657410 L3865 2014
| | 751095172633528545577327078078624772175640550217939071299921885324879926 |
| 339 1035*2^2183770+1 657384 L3514 2014
| | 148188202313807140935853212553420593316640990228383020495945720354232393 |
| 340 1179*2^2182691+1 657059 L2163 2014
| | 526774261571857784625628931957245894291392040218299220337629713932165534 |
| 341 525*2^2180848+1 656504 L3797 2014
| | 920011381481846917478287142613259683060737342857736023336363948553900488 |
| 342 1107*2^2180142+1 656292 L1741 2014
| | 786855496375862348778255558370310611444663944946298568866697463296964834 |
| 343 447*2^2180102+1 656279 L3760 2014
| | 090390958594074582856111016275711451963526791021901924578830158667937767 |
| 344 995*2^2178819+1 655893 L1741 2014
| | 385126186217636899267080087976115396317764040341396207906359896674415380 |
| 345 196597*2^2178109-1 655682 L175 2006
| | 411020174339617148726483073804558688508520572211427340029496549496169835 |
| 346 879*2^2177186+1 655402 L2981 2014
| | 737066740709898073856588636674779204935403471802102042351988620972744411 |
| 347 70082*5^936972-1 654921 L3523 2013
| | 351895398040970338362371843089698608854667271977051310600626307034750742 |
| 348 699*2^2175031+1 654753 L3865 2014
| | 731176636769031308677556296630028937306894857229199232361057071095085739 |
| 349 69*2^2174213-1 654506 L2055 2012
| | 614201247778007962393515447108737153953829076310764398459148976774090003 |
| 350 1069*2^2174122+1 654479 L3865 2014
| | 035647945607994238487843937997606840505870664847071786773172111957362499 |
| 351 793*2^2173720+1 654358 L2322 2014
| | 425354225821248415611789943044359883147971566509960418657497452755168220 |
| 352 651*2^2173159+1 654189 L3864 2014
| | 196844640785180183653509627352913590154243900523713528749229002733804036 |
| 353 1011*2^2172063+1 653860 L2826 2014
| | 589623003166718212247559885749909726560221179116227122031028347541093656 |
| 354 1105*2^2171956+1 653827 L3035 2014
| | 449660272814007341663137409141441618732581986953628084551386318215881717 |
| 355 739*2^2170786+1 653475 L2121 2014
| | 157515983415032358157264798283526406037280654289651317617526825925804376 |
| 356 701*2^2169041+1 652950 L3863 2014
| | 504609842896150339801547557569070930496180724277696547425045289380500253 |
| 357 295*2^2168448+1 652771 L1935 2014
| | 886309233500638343781039591138027594353032001237615552171863930098524089 |
| 358 7*2^2167800+1 652574 g279 2007
| | 927333563174212074159115364029659804578299740420864316065843041120410996 |
| Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) (**)
| | 462031120679327618819713966658696050419520324161798176195061276711871789 |
| 359 359*2^2165551+1 651899 L3838 2014
| | 370040821321029541882341225700794564116168531482162123641188169606068967 |
| 360 1059*2^2164149+1 651477 L2322 2014
| | 609291869043396427345438010448472622571961385764645004497951367603564156 |
| 361 329*2^2163717+1 651347 L2117 2014
| | 880971694749112403692737755274195464373310094230464724828234911635024954 |
| 362 559*2^2163382+1 651246 L1741 2014
| | 997744418297397392425450305024220850961607910175247601381628489343638473 |
| 363 775*2^2162344+1 650934 L3588 2014
| | 620564203407224073048668803466403679604708999484958060630316588606777556 |
| 364 21*2^2160479-1 650371 L2074 2012
| | 110056498212888320095889338479034559757451625042004727210284168572757801 |
| 365 102976*5^929801-1 649909 L3313 2013
| | 927018449849029391396840204443362647742604841677192580478878346507326402 |
| 366 1179*2^2158475+1 649769 L3035 2014
| | 211852205829911385516175623194208030434487267911390506713654666816182915 |
| Divides GF(2158470,6)
| | 118406365162521678964233717640572595415269164784326051048761088274410450 |
| 367 617*2^2156699+1 649234 L1675 2014
| | 165176704373033326183592832224756639339735490106350903544098202111395490 |
| 368 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat
| | 043754437581263251159724643374838570623400387369239812701822134399395103 |
| 369 483*2^2155456+1 648860 L3760 2014
| | 652132930409788205795336052018103236436995020778343318429520674311806124 |
| 370 105*2^2155392+1 648840 L3580 2014
| | 373383412810243873460301971211943334115308136808782241079717004493809661 |
| 371 31340*6^833096+1 648280 p271 2013
| | 313661596701082591741254239481753507047913339371980934378459571426561086 |
| 372 427*2^2153306+1 648213 L3838 2014
| | 641860013094337407861655283969987319369689235604130531775953458741470880 |
| 373 261*2^2152805+1 648062 L1125 2014
| | 990956279003352089960645616841016358510960704040766129985286821392090975 |
| 374 371*2^2150871+1 647480 L2545 2014
| | 921901869853874492400488075727114392146570205604162456229344121487293646 |
| 375 111*2^2150802-1 647458 L2484 2013
| | 783817410545611750792981810686951729923321344401558743428116037725589921 |
| 376 357*2^2148518+1 646771 L1741 2014
| | 777692362433557707554512572573805632016398544258101756225150497975904024 |
| 377 993*2^2148205+1 646678 L1741 2014
| | 861925964463461424718729651138721468903838069398340706472058983068753776 |
| 378 67*2^2148060+1 646633 L3276 2013
| | 521425200398185635631086425731167381084687666969178393795744085783857481 |
| 379 243*2^2147387-1 646431 L2444 2014
| | 965703343236518675843675483814644055948497717547845030050356482134921602 |
| 380 693*2^2147024+1 646322 L3862 2014
| | 268166057069611610952053203622161604713897790544927907682270281531664223 |
| 381 3*2^2145353+1 645817 g245 2003
| | 171708816212403352853565873247317295105164703046724479095381516620034499 |
| Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5),
| | 899292647821851566994089334436928958924500408936747577279417760298073570 |
| GF(2145348,6), GF(2145352,10), GF(2145351,12)
| | 378567743388091785597669521662304870077970074572941899325063555773915584 |
| 382 509*2^2144181+1 645466 L3035 2014
| | 980222856853715128454480958943431306463497389353486754723479999259498016 |
| 383 753*2^2143388+1 645227 L2583 2014
| | 412406149964928350947609961693400360948449689704012584537609666186941479 |
| Divides GF(2143383,3) (**)
| | 921143254638887628912003476774355287741154760807231030753116136291933244 |
| 384 161*2^2142431+1 644939 L3105 2014
| | 861405566048611507223041746389062144259867663958862062707736086162479775 |
| 385 25*2^2141884+1 644773 L1741 2011
| | 334201047513925352612240636240862108042605902387936675127854298895891726 |
| Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10);
| | 338265752409309891129880809513621366132163334632838080474171264057581464 |
| generalized Fermat (**)
| | 053338058387743932429386320555664964176069759657036059170601807098677044 |
| 386 23*2^2141626-1 644696 L545 2008
| | 932408510555724193776660327076712262105749231719639087122725213632351632 |
| 387 519*2^2140311+1 644301 L2659 2014
| | 251345097216734412231460035366182328670283317632280033886392749664265092 |
| 388 7*2^2139912+1 644179 g279 2007
| | 383894112298329794871203669315963370136920979427445206388425455391048384 |
| Divides GF(2139911,12) (**)
| | 699008234453234642881334852048617976092276118533903734451911378593537620 |
| 389 315*2^2139665+1 644106 L3838 2014 (**)
| | 630697503905567060551064423755295155452248224869341527676889485598828639 |
| 390 193*2^2139400+1 644026 L3538 2014
| | 350027171512478356599403982814150336191287784179699508448727752003214011 |
| 391 1113*2^2139060+1 643925 L3914 2014
| | 358775234092520693472988437186066449278678305018985018806195958177755820 |
| 392 292402*159^292402+1 643699 g407 2012 Generalized Cullen
| | 789913724386252093662839304419317192652030192041516606985571240526319995 |
| 393 1051*2^2137440+1 643437 L3865 2014
| | 291673102043450339660128404517179657836503769616845066400797318056624489 |
| 394 1185*2^2137344+1 643408 L3877 2014
| | 893274317114925846714973654649318912134638434593438133022083435196839887 |
| 395 513*2^2135642+1 642896 L3843 2014
| | 406603911416515710691118116280431980581034227712989534059557800448133632 |
| 396 915*2^2135151+1 642748 L2322 2014
| | 202186950318431305161665468803238150218294005975619961641091877103108750 |
| 397 61*2^2134577-1 642574 L2055 2011
| | 517234353115658638133006025544263354575982172787428217463322424097692696 |
| 398 711*2^2132477+1 641943 L2125 2014
| | 373694740528550522042367805143939436150568051638259307939813340572511747 |
| 399 75*2^2130432-1 641326 L2055 2011
| | 706329580985232349744554077403322713514685342437732629895225967337182131 |
| 400 1145*2^2130307+1 641290 L3909 2014
| | 838714491674862994362778094959758648688795190333749249416986495950734252 |
| 401 110488*5^917100+1 641031 L3354 2013
| | 444256256801255779665303499456048977107416891721929475592928754958862844 |
| 402 37*2^2128328+1 640693 L3422 2013
| | 939109019726239633901366761058106501785205930603621781551203334051756710 |
| 403 103*2^2128242+1 640667 L3787 2014 (**)
| | 068975336354580882683963618132760815357823313333776630786895463169723072 |
| 404 253*2^2126968+1 640284 L1935 2014
| | 354013557752405660368413836873512697528478856675440611111248372876632834 |
| 405 583*2^2126166+1 640043 L1741 2014
| | 740495644522525736311848111627340686128283310705108874476272091609775587 |
| 406 999*2^2125575+1 639865 L1741 2014
| | 466922640403607600634677078850832986274138751687329914922764546024417149 |
| 407 587*2^2124947+1 639676 L3838 2014
| | 276761177104889618715289378455640322885506572273357985403712977307074564 |
| 408 451*2^2124636+1 639582 L1741 2014
| | 924396175699495736532860992097492252522594388937868405636392942200615459 |
| 409 887*2^2124027+1 639399 L3865 2014
| | 753439827764912453211117114196594745943873509572529054595881049821384646 |
| 410 693*2^2121393+1 638606 L3278 2014
| | 735060286572461536746028018367179717968666412937719494217125282380761742 |
| 411 8331405*2^2120345-1 638295 L2055 2013
| | 553134706257419407133865719197174845774679716501986743802354472324072712 |
| 412 975*2^2119209+1 637949 L1158 2014
| | 955152641214033446734787164647730279985471410557962703728108211717309579 |
| 413 33*2^2118570-1 637755 L3345 2013
| | 904155062133291170988525770323468360138853911452310479109666552938332354 |
| 414 254*5^911506-1 637118 p292 2010
| | 994708030048476089653542085541559037230299436488901225607637508937369314 |
| 415 1139*2^2115949+1 636968 L3865 2014
| | 406489559200698770093686086835793897184133932209476424767070996968798156 |
| 416 771*2^2115741+1 636905 L1675 2014 (**)
| | 918543297454816198559272225604768590127602819827857028963576606806552009 |
| 417 411*2^2115559+1 636850 L2840 2014
| | 637509128426692695836684415888341012290867139814110404357578804743927558 |
| 418 189*2^2115473+1 636824 L3784 2014
| | 842497511930971868875677050362923170134208748864035539784720313487611065 |
| Divides GF(2115468,6)
| | 562066366921848439506776168001734599940571438169660255381129118607177737 |
| 419 929*2^2114679+1 636585 L3035 2014
| | 707558321099815434300932844474175696329065407391144024734557126989882799 |
| 420 1065*2^2113463+1 636219 L2826 2014
| | 338780469577174254713031859485729505800341930793158612097365873615028006 |
| 421 591*2^2111001+1 635478 L1360 2014
| | 219153786457546998023029914295663956850748423137121658853680835591478301 |
| 422 1051*2^2109344+1 634979 L3035 2014
| | 019770027306538989998416038197014936284037829853622900704659982530806024 |
| 423 433*2^2109146+1 634919 L1935 2014
| | 299792997833187788281084177590070669648673561095851097640705684547205924 |
| 424 519*2^2108910+1 634848 L1356 2014
| | 252959476528343145864051663449441880095487473790406777860042189708685857 |
| 425 1047*2^2108751+1 634801 L3824 2014
| | 834324399221549710173644808641658342083473334029693097316413263852961985 |
| 426 765*2^2106027+1 633981 L3838 2014
| | 751856606097911788079477700913880775464037131014932335473346256428569027 |
| 427 503*2^2106013+1 633976 L1741 2014
| | 360738561327655255560514373593118183676837120296444753344780975951735036 |
| 428 316903*10^633806+1 633812 L3532 2014 Generalized Cullen
| | 010675995080201725936551637824932629902955285637301750139745711354854138 |
| 429 113*2^2104825+1 633618 L3785 2014
| | 161606590614583822982735942245136525541068589699847109054968543855420541 |
| 430 381*2^2103999+1 633370 L2322 2014
| | 433353473719830922275648493738303477821192755107492688356701342419459042 |
| 431 57*2^2103370-1 633180 L2055 2011
| | 374959156607927945186240196745478927333328946031667593781096099147419056 |
| 432 539*2^2102167+1 632819 L3125 2014
| | 916110221943604685978886899308016376616433591925637010467036486902844873 |
| 433 687*2^2100243+1 632239 L3867 2014
| | 291640600818260603258309843762888921835164252919881340564371903622660435 |
| 434 329*2^2099771+1 632097 L2507 2014
| | 340271400341986476466630993490313246186203566455496966744246991939883336 |
| 435 35*2^2099769+1 632095 L3432 2013 (**)
| | 267661134757483115496626251421789837447146574808500210118626400993633330 |
| 436 405*2^2099716+1 632081 L3154 2014
| | 296437345424127502284911539600655326012065793469442503582541771806860332 |
| 437 575*2^2098483+1 631710 L3168 2014
| | 414565005466570222277762943115925803018222543621709132828140226004062736 |
| 438 907*2^2095896+1 630931 L1129 2014
| | 449684723899962705507799409787468735008327516119689310763554467992819880 |
| 439 103*2^2093350+1 630164 L3432 2013
| | 329961135559269948490371579517576380944348844635190419533171815086249791 |
| 440 4001*2^2093286-1 630146 L1959 2014
| | 956837036273608287610245645784348542592045648352716991140511016788488331 |
| 441 369*2^2093022+1 630065 L3514 2014
| | 131378074926724879847469415344381222919037355069815559664702363771065786 |
| 442 165*2^2090645+1 629350 L1209 2014
| | 025061591197590534701154408586993679068136783646828603664132883267090451 |
| 443 1119*2^2090509+1 629309 L2520 2014
| | 399257792712975064288900225948672905771258367222420770139522587859987198 |
| 444 941*2^2090243+1 629229 L1356 2014
| | 107700469189496700789962731651230597940082300870768849117201932962524120 |
| 445 62722^131072+1 628808 g308 2003 Generalized Fermat
| | 485698082895445329336203588900985703769626994089215678357876035793082472 |
| 446 401*2^2088713+1 628768 L3035 2014
| | 426663972493384171244489388052158911693238737551413236911705687848252165 |
| 447 819*2^2088423+1 628681 L3890 2014
| | 356884879999759676472930176644457081817882789166665352189233500361593839 |
| 448 1009*2^2087690+1 628461 L3728 2014
| | 640092339284185743249776155642725473471502131086153820632424887026264461 |
| 449 85*2^2087651-1 628448 L2338 2013
| | 585029303081330864247007044270419541066247796554847484177420363734891861 |
| 450 467*2^2085835+1 627902 L3625 2014
| | 697490342208547049230801761200890758765457895085083760007051266099417822 |
| 451 563528*13^563528-1 627745 p262 2009
| | 477179183871212971671259271006344885066243521203267110956952084892092906 |
| Generalized Woodall (**)
| | 761001379874480539263917225563423169320442306761689112996221217413119010 |
| 452 437960*3^1313880+1 626886 L2777 2012
| | 230410635924237526104752382712453725434513048400644399014646911160652899 |
| Generalized Cullen (**)
| | 779034999573129207310004241631359712264608745919016937380715723271960329 |
| 453 247*2^2082202+1 626808 L3294 2014
| | 270841349127482934785700546117435967383763909134915493844070095894183573 |
| 454 107*2^2081775+1 626679 L3432 2013
| | 068368870625243937689714167464132922097721262513819386240940437855691011 |
| Divides GF(2081774,6)
| | 637192047373730427909268603113253857563534947190897799668690972073520672 |
| 455 655*2^2080562+1 626315 L3859 2014
| | 063819378887860412676895138308448389680958322070084340785199509286001915 |
| 456 201*2^2080464+1 626285 L1741 2014
| | 006511000963264526628283423146266338779685846390297386584000059096092331 |
| 457 269328*211^269328+1 626000 p354 2012 Generalized Cullen
| | 074548720558424458417027568798946614327120976243562925156538218608900200 |
| 458 153*2^2079401+1 625965 L3601 2014
| | 622044621789189259663640287810505785931753412169562946059849478155458140 |
| 459 279*2^2079167+1 625895 L2413 2014
| | 614117752782670356237660552647459935294915562497064870386183598373606924 |
| 460 643*2^2078306+1 625636 L3035 2014
| | 470124725958832219190870682325236267480895963679301641173749923918258153 |
| 461 79*2^2078162+1 625591 L2117 2013 (**)
| | 059339306075293674112146484972120635246895028351532559816107815778525499 |
| 462 239*2^2076663+1 625141 L2413 2014
| | 732938542376652688787659659648380202382345707444205764395963375637668701 |
| 463 1003*2^2076535-1 625103 L51 2008
| | 136135317263892090298420770473461693911196775431327523359311780154234429 |
| 464 2186*7^739474-1 624932 p258 2011
| | 098519734240424337327111972491466940902067133713667879951401956397368258 |
| 465 73*2^2075936+1 624921 L3464 2013
| | 879690865523235270941683976017762848540341815957345322381812933037210053 |
| 466 807*2^2075519+1 624797 L3555 2014 (**)
| | 121255084702612366195836664264985616928333744347656475772511382680410285 |
| 467 65*2^2073229+1 624106 L1480 2013 (**)
| | 882897922481351641807200556568286302054940697512117370537803496457767948 |
| 468 693*2^2072564+1 623907 L3290 2014
| | 954454377621463723107756522225277263247944548598155216995567785061076693 |
| 469 375*2^2071598+1 623616 L2413 2014
| | 409127160970597427418309599203343933744005342528540772836219450354708779 |
| 470 73*2^2071592+1 623614 L1480 2013
| | 966443319251251533736120744703756261644971905747857213807444191278805467 |
| 471 125*2^2071555+1 623603 L3432 2013
| | 828338387158751141796953874454080468948593815659068703053138197466633679 |
| 472 1107*2^2071480+1 623581 L2520 2014
| | 209927872901505272739635849443270016686005840930810547547766326396738728 |
| 473 299*2^2070979+1 623430 L1741 2014
| | 400150359928183827985792067121043006618188996560300303345655176817821221 |
| 474 891*2^2069024+1 622842 L2520 2014
| | 705781490155362397374828128503557745445830802895868215315526445403963715 |
| 475 943*2^2068944+1 622818 L1741 2014
| | 998367404973655746609566762939822193477570239302886666407085272278951250 |
| 476 579*2^2068647+1 622728 L2967 2014
| | 517556534415177118643221311361669391841962314200575756792800579820683910 |
| 477 911*2^2068497+1 622683 L1741 2014
| | 341062856137355006281180976290121436912052024761459298673137503577761120 |
| 478 1005*2^2067272+1 622314 L3895 2014
| | 553620040917640984012056454079228562317903385569071168794014560056994341 |
| 479 393*2^2066540+1 622094 L3700 2014
| | 829283696952612228380343029713991044424067057459097197984119566700140520 |
| 480 951*2^2065180+1 621685 L1403 2014
| | 357966567142740861520773294809842233838711660764242621234967362777036843 |
| 481 915*2^2064663+1 621529 L3035 2014
| | 221920891469895804610151050520340862077014768967667635298191916916183829 |
| 482 9*2^2060941-1 620407 L503 2008
| | 165521210938682279907415034302978562591436979622441056985716215836364740 |
| 483 659*2^2058623+1 619711 L3860 2014
| | 016208828676315334132308647102299181104166516637582482011666158280401267 |
| 484 575*2^2056081+1 618945 L1935 2014
| | 618654530012921435394247130923369778676341893967440186077229118667660483 |
| 485 1095*2^2055975+1 618914 L3518 2014
| | 776112405844989933306280309442539571004104476814163089249639975671381873 |
| 486 3*10^618853+1 618854 p300 2012
| | 710500699886634359048990243775378063961346793694808515599801651864225748 |
| 487 819*2^2054470+1 618461 L2826 2014
| | 018659640280808918340464900301010095444307236962188050884589480594095795 |
| 488 969*2^2054054+1 618335 L3668 2014
| | 619164910974575246928819848534201767250068443921082065929947699336881471 |
| 489 675*2^2053578+1 618192 L1792 2014
| | 429827771180365494266326574020784761209656571846355816365214761348747780 |
| 490 739*2^2051658+1 617614 L3838 2014
| | 703299626442649648621097467645153646779053696074121256442524987939108110 |
| 491 71*2^2051313+1 617509 L1480 2013
| | 106654706928099194961444274368083289604182587284217119540504305959128340 |
| 492 779*2^2050881+1 617380 L3453 2014
| | 586710227557200005777217807728160210324161574884558290060558024887051383 |
| 493 75*2^2050637-1 617306 L2055 2011
| | 592214341917563657381649940505170171233091371989042132372315495524448594 |
| 494 935*2^2050113+1 617149 L3696 2014
| | 718925095458838466101852053524920497486422772452562220673344729890840054 |
| 495 847*2^2049400+1 616934 L2322 2014
| | 205915290514531013299296464601392036329039908020525397114186157570638274 |
| 496 73*2^2048754+1 616739 L3432 2013 (**)
| | 787167371446560411487501304415194573262064997285180302607902281628912706 |
| 497 527*2^2045751+1 615836 L346 2014
| | 306895170305293333818621354213631442144602028847038479633322996993954819 |
| 498 785*2^2045419+1 615736 L3861 2014
| | 460533605257526015479046856289351588555340244500833508972173591008918204 |
| 499 195*2^2044789+1 615546 L3744 2014 (**)
| | 422814338008837962643562583489752524373288588300097524144213963380571364 |
| 500 537*2^2044162+1 615357 L1741 2014
| | 437292884997312450303229166866234000903262034820100558833075258579004375 |
| 501 413*2^2043829+1 615257 L1300 2014
| | 162800757844797379154694298277371770020160859841146566456361598228380958 |
| 502 345*2^2042295+1 614795 L2562 2014
| | 202736251428744508660694178095647677759236466777430109846067666617585835 |
| 503 1069*2^2039562+1 613973 L1741 2014
| | 128060421962708828700353101906824946322003172403091206508510114986602403 |
| 504 625*2^2039416+1 613929 L1741 2014 Generalized Fermat
| | 206577455676600495946270652296190492930294547501965850829303791457860444 |
| 505 1085*2^2038005+1 613504 L2520 2014
| | 545820192025099445400245208703412038387404412420359095883547723584420850 |
| 506 125*2^2037752-1 613427 L2444 2014
| | 297444345755930322933541055663404849784271431007351408870511154908680050 |
| 507 1069*2^2036902+1 613172 L3876 2014
| | 839100516871670741213852679132996387232415097209586966092306693003500635 |
| 508 417*2^2036482+1 613045 L1847 2014
| | 234594484844664948656215597698661630059420500423946020172907198304995055 |
| 509 701*2^2035955+1 612887 L2823 2014
| | 767091374027925655940723025443776701228762882774715917269468687432760257 |
| 510 1025*2^2034405+1 612420 L1741 2014
| | 995912649641234767093283405486253732792809281014958913993078147760223582 |
| 511 651*2^2034352+1 612404 L3459 2014
| | 999943956117200271190507571966928159365659295296144078713824841745104479 |
| 512 121*2^2033941-1 612280 L162 2006
| | 528502607588424278040448517288103967911414350512290365181425527145495406 |
| 513 57*2^2033643+1 612190 L3432 2013 (**)
| | 418712654370170701871354862013021898339273334122271017113302504942171643 |
| 514 249*2^2031803+1 611637 L2327 2014
| | 521627015835208697393813927037057895818355800105167258509612664691441282 |
| 515 783*2^2031629+1 611585 L2126 2014
| | 031009047536400710413818258950598190123624270898189391215267827463612023 |
| 516 285*2^2028495+1 610641 L2594 2014
| | 209549249584791920838257766492906737040973504319936351408682579502932730 |
| 517 775*2^2027562+1 610360 L1204 2014
| | 439109416788324849892400682503144117481052740373884018826058275935772828 |
| 518 621*2^2026864+1 610150 L3446 2014
| | 275028100694028037787830355192395566936313466507429965088625231387609239 |
| 519 357*2^2026846+1 610144 L2163 2014 (**)
| | 098983050367335445971760229315132535440185069309959264735762455575405029 |
| 520 879*2^2026501+1 610041 L1139 2014
| | 008318480556698693747022081802827335841459939450599085629274691867124379 |
| 521 787*2^2026242+1 609963 L2122 2014
| | 285612947357681942482502805620750068789791686882016627330537887073597227 |
| 522 919*2^2024094+1 609316 L1741 2014
| | 437564656154071726589290355468512132971233562571578930724098219730877964 |
| 523 235*2^2023486+1 609133 L2594 2014
| | 359662169654986032106188507551639466928977812766944706444115130410949654 |
| 524 195*2^2023030+1 608996 L376 2014
| | 181369137597203790879165574960330604296235866231700923424544884960714237 |
| 525 8*10^608989-1 608990 p297 2011 Near-repdigit
| | 622826401433572591241756030261123321756310432980974469903063464189803376 |
| 526 233*2^2022801+1 608927 L3767 2014
| | 513702295182779683189107684721527419247106598006155849777402250374421041 |
| 527 521*2^2022059+1 608704 L3760 2014
| | 831445929779772968270649801891891730692981535869526344013255830478406875 |
| 528 431*2^2019693+1 607991 L2100 2014
| | 665658338580668496186314464487903232876508188258232306358804373485166088 |
| 529 1155*2^2019244+1 607857 L3873 2014
| | 048931417814912017655365041372253209100144684701465677038927700299705616 |
| 530 195*2^2018866+1 607742 L2413 2014
| | 195591147809550095597574034223188940457635866847756402101050654325065205 |
| 531 59506*6^780877+1 607646 p254 2013
| | 748277338246368448384211519679548552786621810458023372860273810132021281 |
| 532 45*2^2014557+1 606444 L1349 2012
| | 737382457480652489931760986306277515726713794657850147359391424072589207 |
| Divides GF(2014552,10) (**)
| | 947264049659175615924364099477464989923635727770860594376809806618952853 |
| 533 251749*2^2013995-1 606279 L436 2007 Woodall (**)
| | 107074655746707856536948041466155680107037363409015314490003755174517979 |
| 534 1023*2^2012570+1 605847 L1741 2014
| | 987598124669224282660859876915217467711483922055078455887915508989519086 |
| 535 403*2^2012412+1 605799 L3538 2014
| | 418823367465030513301684953021997843704040484985439650445843975377289581 |
| 536 1173*2^2012185+1 605732 L1413 2014
| | 280160722460169576922763677959828163497523311352892512464947833308423706 |
| 537 751*2^2010924+1 605352 L3859 2014
| | 849524325944298070620376238688051991049003004235752101408714400454832991 |
| 538 101*2^2009735+1 604993 L3432 2013
| | 088375570324674306063465009039598965164499564573250629742865890932710067 |
| 539 1069*2^2008558+1 604640 L1595 2014
| | 605334209585722321628152045979471906376247512603397372450387492350566468 |
| 540 881*2^2008309+1 604565 L3260 2014
| | 878190702293237369760153222721312441163585000239415981493198486347583570 |
| 541 959*2^2008035+1 604482 L1422 2014
| | 547898239851695638121199481970934041280161796830568118125069819708440438 |
| 542 633*2^2007897+1 604441 L3857 2014
| | 446719273094739525032584334922241351418981937012339339247341668969072605 |
| 543 223*2^2007748+1 604395 L1741 2014
| | 491403066704360866658503732978170237128956638644998350134578563180584091 |
| 544 461*2^2007631+1 604360 L1300 2014
| | 296724293920749740623864415347283054997162565093918456765530613749484856 |
| 545 477*2^2006719+1 604086 L3803 2014
| | 201077468596952629820236734130791062706453735954033149843600259461347133 |
| 546 428551*2^2006520+1 604029 g411 2011
| | 772012474636877203269359007747090452701299039377011711589596140906254177 |
| 547 1097*2^2005203+1 603630 L3868 2014 (**)
| | 650162659640668011187989034250740837820252860066464571416977225373353703 |
| 548 493*2^2002964+1 602955 L3800 2014
| | 016982164929173038323907696129626555444732618378657267676768030484842163 |
| 549 315*2^2002904+1 602937 L3790 2014
| | 270224500320159052367214504360333627701164768246601811002357092806359564 |
| 550 77*2^2002742-1 602888 L2074 2013
| | 085099351171644876674022354463474697724905954706464483552678979441769401 |
| 551 585*2^2002589+1 602843 L3035 2014
| | 465033339873219329734654626717536981155952839221384484863560679272626546 |
| 552 1059*2^2001821+1 602612 L2103 2014
| | 817011177505827235221582055501538953600234094927409868497458180664915735 |
| 553 1115*2^2000291+1 602151 L3588 2014
| | 914608915770671013410048057440820152764621149567798772150963437709218519 |
| 554 891*2^2000268+1 602144 L3440 2014
| | 142910801760836020149266693869064661969921242934551679600963228520531569 |
| 555 657*2^1998854+1 601718 L2520 2013
| | 069934779607412287950409673050740129561557615321353990701526486587621167 |
| Divides GF(1998852,10)
| | 044025552347028737232191386968215884457002357688570521327944171524698916 |
| 556 573*2^1998232+1 601531 L1300 2013
| | 846869532733575013368825449172392658260221946917910419566735588894718914 |
| 557 669*2^1995918+1 600835 L2659 2013
| | 182762434023682878629788062914016957897050878580563571624008423886160364 |
| 558 19861029*2^1995311-1 600656 L895 2013
| | 328001433980316708754417464556950089910918868757432847541572273448287965 |
| 559 261*2^1995105+1 600589 L3378 2013
| | 190191060814121537711807402378875969557752338787696024916022881415690147 |
| 560 1031*2^1994741+1 600480 L2626 2014
| | 085863906737487945255156911657278545745333832326131995284459013052779037 |
| 561 577*2^1994634+1 600448 L3035 2013
| | 204096237629140408655337535606531333712995051298294910413463102915519234 |
| 562 497*2^1994051+1 600272 L2413 2013 (**)
| | 611607104170375458973601437286213146815648534531204211054116836765098479 |
| 563 8331405*2^1993674-1 600163 L260 2011
| | 946568538854706187166295579253702714982320624084018976781139768447271330 |
| 564 467917*2^1993429-1 600088 L160 2005
| | 508887725868316170031667013598968735918210044232677026247418693946451475 |
| 565 137137*2^1993201-1 600019 L321 2007
| | 621873338297403679946776964283879819125272036750524115710435951926468623 |
| 566 589*2^1992774+1 599888 L2322 2013
| | 581119549350815031238923633302223470548860530207051859165121718649398585 |
| 567 209*2^1992071+1 599676 L3422 2013
| | 200116228748893029306358819648957598279401070321453215234673706322005832 |
| 568 317*2^1991592-1 599532 L1809 2014
| | 726421545582579425554566508816493904391721131350664239014567858449498462 |
| 569 547*2^1990606+1 599235 L3173 2013
| | 176803238879363322606757909221090124760635011762072499716435835903622498 |
| 570 17*2^1990299+1 599141 g267 2006
| | 153156531855884809582841632004018523610583006185407904443731838713315622 |
| Divides GF(1990298,3)
| | 161748474758942763075618446798445200850735771590662428740713238075746083 |
| 571 105*2^1989208-1 598814 L1959 2014
| | 393060530854710922770200854191563398823824427702105564915136036413514943 |
| 572 1019*2^1988959+1 598740 L3514 2013
| | 874008184050410351008987791343186738719954629316324311520816030826075637 |
| 573 629*2^1988579+1 598625 L2117 2013
| | 340633032096692143116502393759004204489051608966399767093495192603562076 |
| 574 101*2^1988279+1 598534 L3141 2013
| | 493930219410769658785087931995587663578854968095248421089975293401512122 |
| Divides GF(1988278,12)
| | 422110968267172129258974382728659478026061422419765030738952427757923347 |
| 575 733*2^1988086+1 598477 L3502 2013
| | 780394525136364419836100194885076515818021544972945133213015497743151290 |
| 576 135*2^1987735+1 598370 L1300 2013
| | 288626853546936531601851439425516151554909332476414886834814990522734034 |
| 577 162434*5^856004-1 598327 L3410 2013
| | 873774729283629067691462035130489607172842229402149080869025961715716287 |
| 578 749*2^1986977+1 598143 L1492 2013
| | 298116308796980423899425582031775493700462436785510852174528443370371292 |
| 579 174344*5^855138-1 597722 L3354 2013
| | 552144049321408350319729640589233480255108860905969589339696109920097924 |
| 580 8331405*2^1984565-1 597421 L260 2011
| | 743117128990601026881691390322985846602950550825725232464210653254985521 |
| 581 195*2^1983875-1 597209 L1828 2014
| | 029539061433042332015992875231303300539664096795947501225522203860109983 |
| 582 445*2^1980900+1 596313 L3577 2013
| | 607270725632742069824748496377021336647740502594774092621614449792276491 |
| 583 731*2^1980503+1 596194 L3035 2013
| | 225130704202141319916125999715955023536815414734089882443930360761392675 |
| 584 1147*2^1978390+1 595558 L1741 2013
| | 346462907685865019855936603231159827784301597799102253152891037620874710 |
| 585 25*2^1977369-1 595249 L426 2008
| | 653320933089251018829174170392267825445585625979516145484921376049507349 |
| 586 148323*2^1973319-1 594034 L587 2011
| | 715711951556586728293666184423681485180410648882167602993135066762774751 |
| 587 705*2^1972428+1 593763 L3043 2013
| | 699481294332429792949578490227998774606293911586629702140312527337468799 |
| 588 549*2^1971183+1 593388 L2840 2013
| | 492284510180291335778360565469164527369666927479331948720315814260333629 |
| 589 441*2^1968431+1 592560 L3035 2013
| | 480722113761896867356355050849192250980069067481199882918441011647680702 |
| 590 1485*2^1968400-1 592551 L1134 2014
| | 218218948216790186189380992980142236975374747051624158947887938843831338 |
| 591 1159*2^1968190+1 592488 L3035 2013
| | 588275774603776777296806172154255574699445658042569116963642669325717019 |
| 592 731*2^1968039+1 592442 L3682 2013
| | 020550374720275613860468380352482603927136180424852665107983364015904655 |
| 593 833*2^1967841+1 592383 L3744 2013
| | 871304168604779004679765112889591946042937737574959861056723751788446959 |
| 594 989*2^1967819+1 592376 L3738 2013
| | 520074653678631732559408867283251566916096162332581738096414494247338407 |
| 595 1035*2^1967708+1 592343 L3739 2013
| | 251991857023087431507932493569950314632935104786156547016144373479381861 |
| 596 203*2^1966689+1 592035 L1408 2013
| | 928695061303530403310404330547122434355200604178422849898132866559034778 |
| 597 273*2^1966630+1 592018 L2532 2013
| | 416927333063202833994670239044323824524522589671326143369242354474007556 |
| 598 93*2^1965880+1 591791 L1210 2011
| | 514787637414892962780961140158980513502610717273307962393757501349465872 |
| 599 253*2^1965215-1 591592 L3345 2012
| | 808651532489498692924787397085894012316282346400875777824543462178621934 |
| 600 1089*2^1964781+1 591462 L3737 2013
| | 598188090225299751519360310793479046231048718372230480853507785516525256 |
| 601 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat
| | 105184014492105513116046259532283245028268105824627771019675064715035288 |
| 602 125*2^1963964-1 591215 L1959 2014
| | 353796019075862420785951951308518698247150955016220858688382455235240324 |
| 603 175*2^1962288+1 590710 L2137 2013
| | 313139517449545596000122852895554292200399538154137700788463006384482324 |
| Divides GF(1962284,10)
| | 016809748535923028687807505551330739256921998991319891629960801781891908 |
| 604 113*2^1960341+1 590124 L3091 2013
| | 705015916196500235471689522759150434252747487674786909927536499131068730 |
| 605 57406*5^844253-1 590113 L3313 2012
| | 648179244814153079325732156083315470434304654724777827946141081459684662 |
| 606 225*2^1960083+1 590047 L3548 2013
| | 301036451312317038649345959076233538897327515986814812984477664998818653 |
| Divides GF(1960078,6)
| | 136364564068681436735478114661865074649359008087014040819622554560591471 |
| 607 803*2^1959445+1 589855 L2724 2013
| | 592331432720005539769655097272103377547739383434525090084477997575213275 |
| 608 1149*2^1957223+1 589186 L1935 2013
| | 079982240993004336041716782981602925791072979759527745411245924248328452 |
| 609 129*2^1956915+1 589093 L2826 2013
| | 324656508063989397682894530922149708777316652827800854521661918880348832 |
| 610 229*2^1956294+1 588906 L3548 2013
| | 121204543792493786743353087899998559113244357058547187288823778047773721 |
| 611 74*500^218184-1 588874 p355 2013
| | 481757506424748256094606137071300907138535389093087686840414942722255577 |
| 612 1045*2^1955356+1 588624 L1186 2013
| | 082599877615316509902845473263169938751437534947871338701939728975656539 |
| 613 112*113^286643-1 588503 L426 2012
| | 964510059284637562607718693132516168623154948582850118319473185410840753 |
| 614 1137*2^1954730+1 588436 L3733 2013 (**)
| | 942193594804568723771889299312463925410297903617099358550780042243329049 |
| 615 673*2^1954456+1 588353 L3666 2013
| | 566763232842009963051640826482499222991551760945014772960705273790375227 |
| 616 121*2^1954243-1 588288 L162 2006
| | 192332012835662336201546018048039266809359085792230490191543747264821289 |
| 617 351*2^1954003+1 588217 L2413 2013
| | 112336610604261889021655905295386223681143527438945942536605799311437501 |
| 618 641*2^1952941+1 587897 L3487 2013
| | 541894373626029218552040736991749412003729410612742925868816116682727979 |
| 619 Phi(3,94259^59049) 587458 p269 2014
| | 504902876070735733482553801141133897773961402688886979447591639491221302 |
| Generalized unique (**)
| | 089513118605354792714619030645969103637358267244638806217300880559751049 |
| 620 1173*2^1951169+1 587364 L3171 2013
| | 700740198282227952978978800318655818395135741062694898857119362143914164 |
| 621 1101*2^1950812+1 587256 L2719 2013
| | 059139817863318966800096996287022430291967982312618377699602161024978940 |
| 622 313*2^1949544+1 586874 L2520 2013
| | 573133666151416379928137557131134519349354906853083229808619644364001159 |
| 623 391*2^1949159-1 586758 L2519 2014
| | 274984318314856332591358503088587920773490758580681811538385182772267945 |
| 624 539*2^1949135+1 586751 L1130 2013 (**)
| | 707391562910977033476791027909018680321563397246621995493517122295680069 |
| 625 111*2^1946322-1 585904 L2484 2012
| | 728219297971139802886182428081411069790682226801909713391412708231613133 |
| 626 639*2^1945473+1 585649 L2649 2013
| | 962981751836867088540673819714728031458646400184871077500388620468169612 |
| 627 675*2^1945232+1 585577 L3688 2013
| | 829490856534015076173743885612453166452201198125646133324577577213899343 |
| 628 417*2^1943755+1 585132 L3173 2013
| | 978749473907078373222888554660938904889013782899695464258472297699472067 |
| 629 89*2^1943337+1 585005 L2413 2011 (**)
| | 139837521893943246828494130257967940940013316946649881100253064033896289 |
| 630 269*2^1942389+1 584720 L3548 2013
| | 046696845586826794541187730539163738768203375695195267293436128414619792 |
| 631 1093*2^1941672+1 584505 L2322 2013
| | 856897625944185980019027758314742330066102959037551247723890644213140361 |
| 632 193*2^1940804+1 584243 L3418 2013
| | 162922210482243758841831635001137422216801207308309610600093566075176943 |
| 633 827*2^1940747+1 584226 L3206 2013
| | 841390665485786146415668919948839850594538796574844099688190779204445531 |
| 634 221*2^1940211+1 584065 L2327 2013
| | 615183916772029957468011965563233299050119316935531903057750713396786593 |
| 635 575*2^1938673+1 583602 L2019 2013
| | 678451455439623747434389542490828975069224173489524559038340430317566016 |
| 636 1179*2^1938570+1 583571 L1300 2013
| | 807072127488729882147391637145722667147570017376056751231991306887163554 |
| 637 865*2^1938180+1 583454 L3233 2013
| | 860623436474098660326589340623028377640584302670516892488475938459418343 |
| 638 1091*2^1937857+1 583357 L3731 2013
| | 449249022272657179133349299514983642420613307769399721895339998957815552 |
| 639 555*2^1937595+1 583277 L2826 2013
| | 922827662351993034286515414899973928572709145425191654317238679708265385 |
| 640 9299*2^1937309+1 583193 L3886 2014
| | 505810408169246864061475185965561150936283894698862538975125828985195915 |
| 641 239*2^1936025+1 582804 L1741 2013
| | 145595110286372559896559089765000193550067124861204064350135813897900275 |
| 642 182627*2^1934664-1 582398 L3336 2012
| | 061468484923844479673041713251251438396562518743689297975689611976510852 |
| 643 363*2^1932724+1 581811 L3171 2013
| | 719350906593463567221912116009945449390264102679150970897103323728523908 |
| 644 143*2^1932112-1 581626 L1828 2012
| | 315542926500656594494442887582954474929834848428616521332922901745287905 |
| 645 48764*5^831946-1 581510 L3313 2012
| | 931796077476669073298477842833565608512303042482395275202403316698414348 |
| 646 387*2^1930200+1 581051 L1129 2013
| | 650682836057625564546041705687054053894848176360395609595846622260555587 |
| 647 735*2^1929225+1 580758 L3378 2013
| | 968289780597061518124165506254108469252266174201923009242297197037873606 |
| 648 214519*2^1929114+1 580727 g346 2006
| | 171663451439406769353318999276181377215011759534507429951154119813814901 |
| 649 2*47^346759+1 579816 g424 2011
| | 966043876581930991506483248166985147325164628003520291859651331858653449 |
| Divides Phi(47^346759,2) (**)
| | 610358662556313428124476222159567055121040109003730041493155016419572203 |
| 650 633*2^1925684+1 579692 L1408 2013
| | 512503140082013724476710955468644987368767598756287758382007146383138115 |
| 651 1005*2^1923658+1 579082 L3514 2013 (**)
| | 039144311088809030134248637665592494119426552456437513518793371447265789 |
| 652 243*2^1923567-1 579054 L2055 2011
| | 983562080688815095910915851136741036603381159341145896197120088228408467 |
| 653 319*2^1923378+1 578997 L3548 2013
| | 845476282261336725511387477932171839088494659299517084383631586346991768 |
| 654 851*2^1922179+1 578637 L3180 2013
| | 569269715388540167632137408186824231863072517099399397466190445950995287 |
| 655 625*2^1921056+1 578299 L3378 2013 Generalized Fermat
| | 811173130315711698995746634911329237085169038284824034035310118355305790 |
| 656 157*2^1920152+1 578026 L2494 2013
| | 643973038013676949898937745314616033361932707435543694539293738331865184 |
| 657 335*2^1917610-1 577261 L1809 2014
| | 608256633502693801881739535312436669528148381364759117817824424117588168 |
| 658 133631*28^398790-1 577118 p255 2013
| | 644851039044153781790888738779087216157279357368546649137467504720882607 |
| 659 191*2^1916611+1 576960 L1792 2013
| | 773237533274502598354454575616132095866483480438015613052818418989424060 |
| 660 1087*2^1916212+1 576841 L2719 2013
| | 919978245792468602418869017778571804028588452635570355060744333332023398 |
| 661 1125*2^1915695+1 576685 L3719 2013
| | 141926959866397333840282340150475126802592156581413468315177135680712731 |
| 662 207*2^1913067+1 575893 L1741 2013
| | 350704270250038415537831059932456226700738089756783561014712275764039622 |
| 663 849*2^1913021+1 575880 L2413 2013
| | 658363170992753561045390815060185385334402372380572102553137914879977151 |
| 664 85*2^1910520+1 575126 L2703 2011
| | 478748374896085257097391049211910051470364499689217434405259703590159931 |
| 665 267*2^1909876-1 574933 L1828 2013
| | 806927150896881403174122217795242483247301217494471044518280253752633278 |
| 666 621*2^1909716+1 574885 L2117 2013
| | 873399291592925444422249853863484597308333032973459554834620053545534603 |
| 667 611*2^1909525+1 574828 L2413 2013
| | 599761847153795698358351173172957313580444309388205202209429911437677386 |
| 668 435*2^1908579+1 574543 L3385 2013
| | 097605765310488869493827778449893556825072918333377654030600291901427088 |
| 669 291*2^1907541-1 574230 L2484 2013
| | 341500735315284373292990310530826317824629671606161372328421021442841227 |
| 670 573*2^1907450+1 574203 L2520 2013
| | 146304794512406642221864834691651640378705475493236547590950623168057664 |
| 671 969*2^1904357+1 573272 L2719 2013
| | 079463941690451167992111224505399106614552520613565864633145757604348479 |
| 672 27*2^1902689-1 572768 L1153 2009
| | 694090180959332757335676660605092887423118257869041542906709346271444856 |
| 673 553*2^1902102+1 572593 L2520 2013 (**)
| | 322344560579314891746827601881447983835644103667113014433220171331832678 |
| 674 1323*2^1899548-1 571825 L1828 2014
| | 380496446922218213139384826040893946970231687457503609508224033168765908 |
| 675 633*2^1897632+1 571247 L1741 2013
| | 824226133160601665105793164246724132116925617808970250319902084499199695 |
| 676 1131*2^1897379-1 571172 L1828 2014
| | 060498258312458106125649107476552840973911030664128727480060225022584662 |
| 677 707*2^1895035+1 570466 L3035 2013
| | 311878986149356822031967559856326987538966921164527838172972400057910059 |
| 678 1053*2^1891799-1 569492 L1828 2014
| | 762315614639879283021495621112802798447397121314616378666138530505599054 |
| 679 687*2^1891730+1 569471 L3221 2013
| | 513013612360727041935406951968398197321074593411745281024300021569839785 |
| 680 87*2^1891391+1 569368 L2673 2011 (**)
| | 630704772863659791462839438098108733765043436983206896866385066988209035 |
| 681 85287*2^1890011+1 568955 p254 2011
| | 033966138406749517167282978537696241744949172935011460338020332948823284 |
| 682 221*2^1889983+1 568944 L1741 2013
| | 529741082642222658287500282583940013570473576644182975012115322621727632 |
| 683 585*2^1887819+1 568293 L3171 2013
| | 989259174887228399321229959668442658045939069136807144343695705100418457 |
| 684 347*2^1887507+1 568199 L3548 2013
| | 977301680433678308131122013227940953749035721058949282006159082012618065 |
| 685 391*2^1886863-1 568005 L1809 2014
| | 010849069300812203109534164444442448363889279312459370169953949326988559 |
| 686 791*2^1885961+1 567734 L3075 2013
| | 716288240433265972299919214906061330336912940063174589319541221944251784 |
| 687 975*2^1885724+1 567663 L1129 2013
| | 899185046235838589650513466760527026317492300522433381715823615537600911 |
| 688 987*2^1885160+1 567493 L2070 2013
| | 977490943492853062434725905567385464690988904409949224320128203494514596 |
| 689 744716047603963*2^1884575-1 567329 L257 2013
| | 478530067449769481992667378003247582777308709464763324640111910634922776 |
| 690 485*2^1884579+1 567318 L3548 2013
| | 584335807061143664691781904728252076619136867090396555542657173316109268 |
| 691 879*2^1883385+1 566959 L3223 2013
| | 602123284278917010752537237703496653873670570536791648941273420743114990 |
| 692 693*2^1881882+1 566506 L2322 2013
| | 258015791204781753100118283250121292138794721027794378676681867805229520 |
| 693 639*2^1880451+1 566075 L3141 2013
| | 271279436082483507618434066381396025491648970532253408675169172535007544 |
| 694 277*2^1880022+1 565946 L3418 2013
| | 232264685830722485590968360542863330420709743392662888720659458690344210 |
| 695 89*2^1879132-1 565678 L1828 2013
| | 685421558762271489491715869191045504390747113833737069955915676460905034 |
| 696 441*2^1879067+1 565659 L2840 2013
| | 892606809321834639348240863310123037386836641581967984085836594882368539 |
| 697 729*2^1877995+1 565336 L1792 2013
| | 589113593772226483733216455976053371394247637415837479307113074025437927 |
| 698 645*2^1877756+1 565264 L2981 2013
| | 427190984637205337329305125780224479926958541252650449281243997011128832 |
| 699 613*2^1876758+1 564964 L2413 2013
| | 007129979158045538747028957659062645734634947478263483425720130098098631 |
| 700 267*2^1876604+1 564917 L1792 2013
| | 233276139776902842383770553659015654633410188593625041022278834502499308 |
| 701 345067*2^1876573-1 564911 g59 2005
| | 438726257568430941811713516390966356054112406374752158643143641561866252 |
| 702 1063*2^1876427-1 564864 L1828 2014
| | 641773200669443379301740078702760634334381058334890583712064517262163797 |
| 703 1389*2^1876376-1 564849 L1828 2014
| | 815362387369590223119476196947778473895734943343363858290551143255483212 |
| 704 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen
| | 412740297966264920078682643177840208042250160619905284964645696867663316 |
| 705 4015*2^1875453-1 564572 L1959 2014
| | 351606989777958484036177181689321660909225573338822066892658022126747106 |
| 706 1043*2^1875213+1 564499 L2413 2013
| | 663943254770738043088542502392021220783921490657384346406600394236742449 |
| 707 1209*2^1874804-1 564376 L1828 2014
| | 468188661005274318835120386548470804300423520433089943297372017807692413 |
| 708 1199*2^1874495+1 564283 L2827 2013
| | 127800931333620043815908345210661011502423244913549982869844800421348920 |
| 709 495*2^1874077+1 564157 L1344 2013
| | 606588649847457540915947652107216974009355421012795514348308979194754175 |
| 710 71*2^1873569+1 564003 L1223 2011
| | 056715095682545804923437036389151138973164873906305957850142523116360048 |
| Divides GF(1873568,5) (**)
| | 991711579425445314154688246062380203761112095966147612604671694190201330 |
| 711 21*2^1872923-1 563808 L2074 2012
| | 422574422905120662244553175029470136889924304397412150308580465170908305 |
| 712 1309*2^1871045-1 563244 L1828 2014
| | 837128930714130792926248142434338039418110061385789886392161220849962142 |
| 713 735*2^1870118+1 562965 L3075 2013
| | 435772471820244497174955520233944444367474361528336846185924559327890742 |
| 714 575*2^1869989+1 562926 L3650 2013
| | 186843448936368083805723176319407903424800959655504526571636831024671451 |
| 715 315*2^1869119-1 562664 L2235 2012
| | 954596569149522020420367093162664099659699390515019363566571798900156881 |
| 716 933*2^1868602+1 562509 L3709 2013
| | 107607827508805973467442618362790873079840460237355950528329032468037502 |
| 717 503*2^1868417+1 562453 L3378 2013
| | 569057250343411891372548334774275548106374983179368249267099476885131038 |
| 718 1073*2^1867944-1 562311 L1828 2014
| | 178453009004165733658566592181649153460085568769879277586095119422865293 |
| 719 1115*2^1866094-1 561754 L1828 2014
| | 220819386077107681911394013715105826271263053943316023468355737834966482 |
| 720 407*2^1864735+1 561344 L2520 2013
| | 401452691354211025858018179127788780728808731156554792616765971564975465 |
| 721 489*2^1864339+1 561225 L2520 2013
| | 884271937467221366129905985541083866154150882715557149073313344330653305 |
| 722 427*2^1863702+1 561033 L3586 2013
| | 526226811066372344144726750407737922874375909891125178891888352379706907 |
| 723 1161*2^1863637+1 561014 L3213 2013
| | 391147716902403424845209105619180046697832614430940051300450528312440407 |
| 724 2*3^1175232+1 560729 p199 2010 (**)
| | 283476628213862925507691294572020982829475764372663579676977500006752962 |
| 725 13*2^1861732+1 560439 g267 2005
| | 420881567908622634021470750529983582311403619485593437452453847427753822 |
| Divides GF(1861731,6)
| | 005951926775612604242696344498206481672917862912099920789984872475816836 |
| 726 411*2^1861627+1 560409 L1741 2013
| | 956072977549986395370936024140341118763144467866062451658481048615343978 |
| 727 1165*2^1860749-1 560145 L1828 2014
| | 789227592503906475720172262503272740535481901590705141949973814564117541 |
| 728 103*2^1860103-1 559949 L2484 2012
| | 750948692735242481097489399302292353109089320853596222375953444957331600 |
| 729 161*2^1859586-1 559794 L177 2013
| | 976700924119007902325658067361088373733018914574111247335262250826341912 |
| 730 51*2^1859193+1 559675 L1204 2011
| | 253419364948547418564514150644247176172527005248782001175107853852497071 |
| 731 1177*2^1859144+1 559662 L3625 2013
| | 055755700527972090364736816583277189157220665479325251932927569351286747 |
| 732 8331405*2^1858587-1 559498 L260 2011
| | 236785493684307028775583469155672866688973681930113154607722697936032374 |
| 733 669*2^1857223+1 559083 L2413 2013
| | 239270653997269497528555480567910506050303251998248886219130777717559085 |
| 734 1125*2^1856703-1 558927 L1828 2014
| | 622711717333825041110007503116772069320680105873768867747644913157469905 |
| 735 1155*2^1855389-1 558531 L1828 2014
| | 678248299409969635432169259393013107559517484875323126152980810448404395 |
| 736 4031*2^1855338-1 558516 L1959 2014
| | 852216791032203447390082362034833060981277625469857891730621440399110949 |
| 737 126072*31^374323-1 558257 L2054 2012
| | 569624796650225751270390862848647744956782611907698058227931514765144168 |
| 738 1229*2^1853192-1 557870 L1828 2014
| | 695818941958162464076751561310290156680661253124108856318833488760889993 |
| 739 333*2^1853115-1 557846 L1830 2012
| | 217892601007513264185388283988211683064026339625525848733504962484247746 |
| 740 87*2^1852590-1 557688 L2055 2011
| | 062493281989434710736565978773728570762304649014774663386647843087698320 |
| 741 765*2^1849609+1 556791 L1792 2013
| | 590971266079314112830268458812860483759204327604605146097920724387506466 |
| 742 137*2^1849238-1 556679 L321 2007
| | 831156201157830819644217159143098130885727481374450596657436975612781648 |
| 743 639*2^1848903+1 556579 L3439 2013
| | 376417163355235777038581460748516827743363009530091088599417772273846391 |
| 744 261*2^1848217+1 556372 L1983 2013 (**)
| | 423709001806583419651291802463011051977292930509650113561769493980947563 |
| 745 275*2^1846390-1 555822 L2444 2014
| | 042748469035681320939262211252069853758540945361142332279217138012835487 |
| 746 1011*2^1846173+1 555757 L3221 2013
| | 470609701550407079514092678012016145829591639763514816848259135363797916 |
| 747 1029*2^1844975+1 555396 L2626 2013
| | 318391877641991441621096196626663616356156907490468599757533972711737134 |
| 748 133*2^1843619-1 554987 L1959 2014
| | 348069962605081884406880268780515662289446027372512072422928347020364653 |
| 749 261*2^1843555-1 554968 L1828 2013
| | 676857369543355775111044077137021302601834356067095405268088039003304736 |
| 750 953*2^1841461+1 554338 L3612 2013
| | 440804833857703183585983700508310421780378029372938580989371824408911744 |
| 751 1089*2^1840695-1 554108 L1828 2014
| | 443062697633053937529525750641876431948009214260473535485526703530148906 |
| 752 105*2^1840262-1 553977 L1959 2014
| | 955093469715152264611308452605157520079716512248639466259012445682129565 |
| 753 1009*2^1840225-1 553966 L1828 2014
| | 775466617037641657659868456134823028909975435769583110952922003353157459 |
| 754 1323*2^1839623-1 553785 L1828 2014
| | 584900086050610904745629409975883374940848838488738971628776989653151371 |
| 755 681*2^1839269+1 553678 L3141 2013
| | 600477679073606333624946331362405110188783559993066886293699677246527664 |
| 756 399*2^1839019-1 553603 L1809 2014
| | 106161085364058580896580339012241017009241627454355192250346474568052748 |
| 757 779*2^1838955+1 553584 L3640 2013
| | 126685429106576264006597819259761126958592827836300659194464011711358679 |
| 758 135*2^1838124+1 553333 L3472 2013
| | 553506699957334400928816710072768879519017858650742011829999919478163685 |
| 759 15*2^1837873-1 553257 L632 2008
| | 122803069311776703633684505275140231797652087384573396441728383788093805 |
| 760 379*2^1837291-1 553083 L1809 2014
| | 323402803138948212545716754853947591686017632882825739014465542856433382 |
| 761 333*2^1837105+1 553027 L3470 2013
| | 123473349591835580191191518716618238342575851590958427426811101783454737 |
| 762 309*2^1836139+1 552736 L3460 2013
| | 461707046131077619909220566100256466997230913718990572020618842805854944 |
| 763 4061*2^1835582-1 552569 L1959 2014
| | 517848308632257633598837008459109764416712662171922802133672996611304786 |
| 764 423*2^1835585+1 552569 L2873 2013
| | 078422960543358795605290322266414682384241431483960309141235055354170456 |
| 765 1181*2^1834802-1 552334 L1828 2014
| | 188452362811283724606929102338862088408316520502357303798674160668847769 |
| 766 73*2^1834526+1 552250 L1513 2011 (**)
| | 935147727936977344791286283171840637923314471118503252285119495535875708 |
| 767 309*2^1834379+1 552206 L3471 2013
| | 508729796280206625425167071290324423561661743845115122364073358846908100 |
| 768 87*2^1834098+1 552121 L1513 2011 (**)
| | 512281023927868918504670469549454865902290480624096874773377004530691926 |
| 769 1021*2^1833459-1 551930 L1828 2014
| | 943446245516755123698606824457828828109993178792099509757235682078118111 |
| 770 1485*2^1832651-1 551687 L1134 2014
| | 208502842410242146269413895302395114995561039875226801236155135632713751 |
| 771 3*2^1832496+1 551637 p189 2007
| | 837620164906787015173472432409125732478302695078551906999168505116430524 |
| Divides GF(1832490,3), GF(1832494,5) (**)
| | 692474553264710200849593475204435079301615421798479105540959034457743580 |
| 772 549*2^1832457+1 551628 L3641 2013 (**)
| | 021898876719793934816538818361481253746066933135434024069127082887045863 |
| 773 295*2^1832129-1 551529 L2444 2014
| | 435230773537169983990299335894549962578952926810578732479203305850531110 |
| 774 761*2^1831569+1 551361 L2117 2013
| | 567350145176788735755041971938181933775122713241469216318176319513168419 |
| 775 519*2^1831415+1 551314 L3277 2013
| | 357752986799369200052637838868386753950387653601364181943729664030444666 |
| 776 21*2^1830919+1 551163 g279 2004 (**)
| | 563110018724022697976708621482121223418370420355173750573662169631265470 |
| 777 197*2^1830255+1 550964 L1360 2013
| | 850774578821512454702190211380845765510276739250313775077560777073788134 |
| 778 1021*2^1827279-1 550069 L1828 2013
| | 442912923833594232650693061653758746288288704471696136176388812208561839 |
| 779 825*2^1825439+1 549515 L3289 2013
| | 544189327116306458431461140896384716738168971580613261192807522708221582 |
| 780 679*2^1824918+1 549358 L2100 2013
| | 155775265244433093323213995640043064382345281415740463905550383709841093 |
| 781 39*2^1824871+1 549343 L2664 2011
| | 580142449207046954781168857229747149186411082958726085052595152595624443 |
| Divides GF(1824867,6)
| | 016115025662079410072309021562911907924690474038100489410170168467103466 |
| 782 235*2^1824515-1 549237 L2444 2014
| | 205054150307240413282930808617833791955030413084360898295954223093095577 |
| 783 162668*5^785748-1 549220 L3190 2012
| | 380169647846191036380145714674553418631133778156421415290082111562740331 |
| 784 389*2^1824385+1 549198 L1487 2013
| | 591080930651298057140851535210611782272423677292350967152838880087344987 |
| 785 1135*2^1824103-1 549113 L1828 2013
| | 450776814946725294845909749713396303091014885388605834965337741417045557 |
| 786 991*2^1822216+1 548545 L1312 2013
| | 896631388700934197399590667787211348189087155682317752858687175781509456 |
| 787 1089*2^1821417+1 548305 L1741 2013
| | 855044790179615805927402719073525521894619084357750099762270814037018242 |
| 788 993*2^1821088+1 548206 L2131 2013
| | 825305280502323833013472458619199445061582380452918048544681951451949636 |
| 789 513*2^1820982+1 548173 L2826 2013
| | 312514366685637714264883715043399206201312040297905019685931379548319676 |
| 790 933*2^1820068+1 547899 L2895 2013
| | 729775227255550857529514359036241418977144150668714393782472613736457460 |
| 791 921*2^1819560+1 547746 L1741 2013
| | 340079952618675406674572389924677357973937476493398391223577487656168657 |
| 792 557*2^1819191+1 547634 L2526 2013
| | 354123701464695836700426897137100146879613281747613882036438007494601446 |
| 793 593*2^1818825+1 547524 L3630 2013
| | 392506341869980260966886333068019962694281193855084783448209273322180391 |
| 794 1161*2^1818637+1 547468 L2399 2013
| | 390638383680973416251782090570420949244676029504904347514635799087620547 |
| 795 1387*2^1818593-1 547455 L1828 2012
| | 034129242112510888742839450101005173709346103425162741913672712570221584 |
| 796 875*2^1818427+1 547405 L3035 2013
| | 726495044700389413567804907233146827656375855689592853006935180774995309 |
| 797 229*2^1818078+1 547299 L3456 2013
| | 630911932140784599178495561712206467554340006672609031298817135719934935 |
| 798 454483*2^1817935-1 547259 p77 2014 (**)
| | 146137265439882767486530833401207525614621534820818813735023934536256123 |
| 799 127*2^1817862+1 547234 L3452 2013
| | 702175795779671925727734945884611398734929276465743163091562344564772578 |
| 800 35*2^1817486-1 547120 L2074 2011
| | 929357035410969308988239760498099187868159010376044654615616756008616625 |
| 801 1155*2^1816779-1 546909 L1828 2012
| | 399004957126760319627996996737662192939911898501512527602176818666217576 |
| 802 69*2^1816739+1 546895 L1204 2011
| | 578823493796072677224851401873990555382533177727286371237444717368459101 |
| 803 875*2^1814911+1 546346 L3691 2013
| | 926137347581095384619243322750529625862798215554897516561493090406450803 |
| 804 1029*2^1813839+1 546023 L3378 2013
| | 180046130429719757872713413761014423417513545951628390926118188035891887 |
| 805 555*2^1813556+1 545938 L3233 2013
| | 576811988232263318525775290533538766407206689244629505138605271679326260 |
| 806 33*2^1813526-1 545928 L621 2008
| | 049870139501881812080338550115631031175850412038609665072538352283722567 |
| 807 1347*2^1813433-1 545901 L1828 2012
| | 932065106366068292119992357106397848241727576305345507591764512885932291 |
| 808 1143*2^1813125+1 545809 L3514 2013
| | 937249549576753665786936533524804605200289218951388785044650276709861686 |
| 809 1197*2^1811852+1 545425 L3035 2013
| | 825464033128797778651012021864413432825062410327901479960528728167176587 |
| 810 693*2^1811517+1 545324 L2967 2013 (**)
| | 971433107867090778128273753887367609480131123675935373122216889311134938 |
| 811 1099*2^1810686+1 545074 L3458 2013
| | 811400043079164530339234123288383548512758947582800388628534521628736727 |
| 812 1305*2^1809766-1 544797 L1828 2011
| | 735342373373182859162609506950710909725014233134917279197594178183570406 |
| 813 1185*2^1809466-1 544707 L1828 2011
| | 143514164031420923170653523067768157621840273321270705147079665954807311 |
| 814 659*2^1808691+1 544474 L3625 2013
| | 764029093514905960419486417183694288344783509036236507228107705949016010 |
| 815 145*2^1807767-1 544195 L840 2013
| | 614289958460275110025356021030788484830444430570835604330842291153764208 |
| 816 9*2^1807574+1 544135 L2419 2011
| | 409654642938199134306624872211710982722974151297291249662861837277182742 |
| Generalized Fermat (**)
| | 220026173229251289654487557582980945305464155127748194087929750467972205 |
| 817 4117*2^1807085-1 543991 L1959 2014
| | 201951918016947974762597305012371914677167407504091256232943367867742510 |
| 818 375*2^1806591+1 543841 L3233 2013
| | 414318603815683919866312209692978083214152549874179491142722114031797068 |
| 819 889*2^1806470+1 543805 L2967 2013
| | 261244337894387815715899261336979870899979287651779552771487296817949322 |
| 820 1033*2^1805844+1 543617 L1502 2013
| | 117030495493142433066838509150408491849812433479593960504595155560138941 |
| 821 981*2^1805368+1 543473 L2413 2013
| | 883756956293547386309052351739236332109678402667348086549531088581059219 |
| 822 915*2^1805031+1 543372 L1741 2013
| | 786623074417878000952762137249653574604264399242303448430779775164094450 |
| 823 691*2^1804332+1 543161 L3625 2013
| | 937253893165187360038161838104833172065847354635280318642587095583595415 |
| 824 385*2^1802362+1 542568 L3279 2013
| | 834716520048444134940562568205210868464584282149415640545098921676361776 |
| 825 661*2^1802024+1 542467 L2967 2013
| | 057500900650202255539881360497338492307884693757341889683189894273959851 |
| 826 985*2^1801582+1 542334 L3035 2013
| | 424556913624903558986458942160005598856879520449553036766121145820252417 |
| 827 301*2^1801207-1 542220 p281 2010
| | 085662896748837382660076159612313472583851425025195366670897686464351420 |
| 828 1193*2^1801112-1 542192 L1828 2011
| | 989375911087178594416075889361888024341206883220380111770236514623463254 |
| 829 417643*2^1800787-1 542097 L134 2005
| | 630337175704546789621817901382867181356291568437424695202913762774819295 |
| 830 1045*2^1800784+1 542094 L3141 2013
| | 385942995258303000617708281986844933302340104392759176586303336223897189 |
| 831 1045*2^1800025-1 541865 L1828 2011
| | 52919899041016380462685295158957611844988078723043689626791836387377151 |
| 832 43*2^1799016+1 541560 L2562 2011 (**)
| |
| 833 4079*2^1798192-1 541314 L1959 2014
| |
| 834 1047*2^1797890+1 541222 L3473 2013
| |
| 835 319*2^1797261-1 541032 L1819 2013
| |
| 836 1103*2^1796969+1 540945 L2826 2013
| |
| 837 43*2^1795628+1 540540 L1129 2011
| |
| 838 383*2^1794636-1 540242 L1809 2014
| |
| 839 423*2^1794546+1 540215 L3131 2013
| |
| 840 1101*2^1794417-1 540177 L1828 2014
| |
| 841 387*2^1793857-1 540008 L2519 2014
| |
| 842 105*2^1793519-1 539906 L1959 2014
| |
| 843 1103*2^1792513+1 539604 L3262 2013
| |
| 844 431*2^1791441+1 539281 L3453 2013
| |
| 845 1185*2^1791429-1 539277 L1828 2014
| |
| 846 607*2^1790196+1 538906 L346 2013
| |
| 847 1059*2^1789353+1 538652 L1130 2013
| |
| 848 975*2^1789341+1 538649 L2085 2013
| |
| 849 273*2^1788926-1 538523 L1828 2013
| |
| 850 289184*5^770116-1 538294 p353 2012
| |
| 851 1065*2^1787993-1 538243 L1828 2014
| |
| 852 441*2^1787789+1 538181 L1209 2013
| |
| 853 565*2^1787136+1 537985 L1512 2013
| |
| 854 247*2^1786968+1 537934 L2533 2013
| |
| 855 227*2^1786779+1 537877 L2058 2013
| |
| 856 11812*5^769343-1 537752 p341 2012
| |
| 857 933*2^1786320+1 537739 L1505 2013
| |
| 858 507*2^1786194+1 537701 L3422 2013
| |
| 859 921*2^1785808+1 537585 L3262 2013
| |
| 860 1187*2^1785707+1 537555 L1753 2013
| |
| 861 256*14^468784+1 537289 L3802 2014 Generalized Fermat
| |
| 862 63*2^1784498+1 537190 L1415 2011 (**)
| |
| 863 1333*2^1784103-1 537072 L1828 2014
| |
| 864 231*2^1783821+1 536986 L3262 2013 (**)
| |
| 865 4069*2^1781691-1 536347 L1959 2014
| |
| 866 575*2^1781313+1 536232 L3262 2013
| |
| 867 883*2^1780324+1 535934 L2963 2013
| |
| 868 391*2^1780155-1 535883 L1809 2014
| |
| 869 45*2^1779971+1 535827 L1223 2011
| |
| Divides GF(1779969,5) (**)
| |
| 870 357659*2^1779748-1 535764 L47 2005
| |
| 871 123*2^1779728-1 535754 L3967 2014
| |
| 872 1061*2^1779595+1 535715 L3445 2013
| |
| 873 455*2^1779315+1 535630 L2121 2013
| |
| 874 863*2^1778737+1 535457 L1505 2013
| |
| 875 316594*5^766005-1 535421 L3157 2012
| |
| 876 99*2^1777688-1 535140 L1862 2011
| |
| 877 5*2^1777515+1 535087 p148 2005
| |
| Divides GF(1777511,5), GF(1777514,6)
| |
| 878 511*2^1777488+1 535080 L2873 2013
| |
| 879 243*2^1777467-1 535074 L2055 2011
| |
| 880 177*2^1775674-1 534534 L2101 2012
| |
| 881 293*2^1775450-1 534467 L2074 2014
| |
| 882 1005*2^1775235-1 534402 L1828 2014
| |
| 883 129*2^1774709+1 534243 L2526 2013
| |
| Divides GF(1774705,12)
| |
| 884 163*2^1771524+1 533285 L1741 2013 (**)
| |
| 885 381*2^1771493+1 533276 L3444 2013
| |
| 886 795*2^1770840+1 533079 L1505 2013
| |
| 887 665*2^1769303+1 532617 L3441 2013 (**)
| |
| 888 473*2^1769101+1 532556 L3459 2013
| |
| 889 855*2^1768644+1 532418 L1675 2013
| |
| 890 99*2^1768187+1 532280 L2517 2011
| |
| 891 273*2^1766747-1 531847 L1828 2013
| |
| 892 191*2^1766221+1 531688 L2539 2013
| |
| 893 190088*5^760352-1 531469 L2841 2012
| |
| Generalized Woodall (**)
| |
| 894 1005*2^1765454-1 531458 L1828 2014
| |
| 895 35*2^1765449+1 531455 L1204 2011 (**)
| |
| 896 1347*2^1765384-1 531437 L1828 2014
| |
| 897 981*2^1765221+1 531388 L1204 2013
| |
| 898 255*2^1765113+1 531355 L2085 2013
| |
| 899 399*2^1764851-1 531276 L1809 2014
| |
| 900 65*2^1764687+1 531226 L1125 2011
| |
| 901 717*2^1763367+1 530830 L3440 2013
| |
| 902 335*2^1762548-1 530583 L1809 2014
| |
| 903 1399*2^1762191-1 530476 L1828 2014
| |
| 904 16193*22^395119-1 530421 p255 2013
| |
| 905 531*2^1761689+1 530324 L3458 2013
| |
| 906 963*2^1761050+1 530132 L1204 2013
| |
| 907 1253*2^1760738-1 530039 L1828 2014
| |
| 908 4199*2^1760292-1 529905 L1959 2014
| |
| 909 1037*2^1760216-1 529881 L1828 2014
| |
| 910 969*2^1759430+1 529645 L3262 2013
| |
| 911 119*2^1759247+1 529589 L3035 2013
| |
| 912 2*191^232149+1 529540 g424 2011
| |
| Divides Phi(191^232149,2) (**)
| |
| 913 417*2^1759055+1 529531 L2623 2013
| |
| 914 787*2^1757702+1 529124 L3436 2013 (**)
| |
| 915 357*2^1756764-1 528842 L2519 2014
| |
| 916 57*2^1756702+1 528822 L1741 2011
| |
| 917 135*2^1756478+1 528755 L3127 2013
| |
| 918 855*2^1756269+1 528693 L2636 2013
| |
| 919 603*2^1756142+1 528655 L2559 2013
| |
| 920 71*2^1755965+1 528600 L1741 2011
| |
| 921 485*2^1755887+1 528578 L3262 2013
| |
| 922 31*2^1755317-1 528405 L330 2011
| |
| 923 955*2^1755312+1 528405 L1741 2013
| |
| 924 1391*2^1754922-1 528288 L1828 2014
| |
| 925 161*2^1754223+1 528076 L3014 2013
| |
| 926 5077*2^1753317-1 527805 L251 2008
| |
| 927 1261*2^1753021-1 527716 L1828 2014
| |
| 928 387*2^1752919+1 527684 L2636 2013
| |
| 929 65*2^1752885+1 527673 L1204 2011
| |
| 930 355*2^1752713-1 527622 L2519 2014
| |
| 931 363*2^1752116+1 527443 L2085 2013
| |
| 932 641*2^1751823+1 527355 L3459 2013
| |
| 933 261*2^1751160+1 527155 L3192 2013
| |
| 934 1179*2^1750847+1 527061 g387 2009
| |
| 935 1293*2^1750532-1 526966 L1828 2014
| |
| 936 340168*5^753789-1 526882 p323 2012
| |
| 937 183*2^1747660+1 526101 L2163 2013
| |
| Divides Fermat F(1747656)
| |
| 938 265*2^1745450+1 525436 L3423 2013
| |
| 939 297*2^1745377-1 525414 L2074 2014
| |
| 940 1293*2^1744930-1 525280 L1828 2014
| |
| 941 495*2^1744183+1 525055 L1933 2013
| |
| 942 327*2^1743751+1 524924 L1130 2013
| |
| 943 415*2^1743176+1 524751 L3428 2013
| |
| 944 695*2^1742755+1 524625 L1741 2013
| |
| 945 1285*2^1742735-1 524619 L1828 2014
| |
| 946 243*2^1742689+1 524605 L1204 2013
| |
| 947 345*2^1742652-1 524594 L1830 2012
| |
| 948 867*2^1742474+1 524540 L3188 2013
| |
| 949 91*2^1742093-1 524425 L2338 2012
| |
| 950 905*2^1742026-1 524406 L2012 2014
| |
| 951 1295*2^1741794-1 524336 L1828 2014
| |
| 952 315*2^1741334-1 524197 L1830 2012
| |
| 953 525*2^1740056+1 523812 L1204 2013
| |
| 954 319*2^1740047-1 523809 L1819 2013
| |
| 955 1157*2^1739902-1 523766 L1828 2014
| |
| 956 357*2^1739732+1 523715 L3427 2013
| |
| 957 687*2^1739343+1 523598 L2117 2013
| |
| 958 1041*2^1739189-1 523552 L1828 2014
| |
| 959 627*2^1738864+1 523454 L2117 2013
| |
| 960 95*2^1738427+1 523321 L2085 2011
| |
| 961 793*2^1738400+1 523314 L3035 2013
| |
| 962 729*2^1737901+1 523164 L2603 2013
| |
| 963 1065*2^1736222+1 522658 L1204 2013
| |
| 964 573*2^1735454+1 522427 L2675 2013
| |
| 965 545*2^1735043+1 522303 L2131 2013
| |
| 966 61*2^1734983-1 522284 L2055 2011
| |
| 967 1125*2^1734821-1 522237 L1828 2014
| |
| 968 6*10^522127+1 522128 p342 2012
| |
| 969 1113*2^1733627-1 521877 L1828 2014
| |
| 970 741*2^1733507+1 521841 L2549 2013
| |
| 971 471*2^1732587+1 521564 L2085 2013
| |
| 972 387*2^1732185-1 521443 L1809 2014
| |
| 973 547*2^1731248+1 521161 L2873 2013
| |
| 974 245*2^1730188-1 520841 L1862 2014
| |
| 975 55*2^1729777-1 520717 L2074 2013
| |
| 976 421*2^1729092+1 520512 L3234 2013
| |
| 977 193*2^1728894+1 520452 L2559 2013
| |
| 978 213*2^1728847-1 520438 L1863 2014
| |
| 979 341*2^1728697+1 520393 L2981 2013
| |
| 980 213*2^1728569+1 520354 L2520 2013
| |
| 981 277*2^1728302+1 520274 L1130 2013
| |
| 982 997*2^1728146+1 520227 L1595 2013
| |
| 983 929*2^1728099+1 520213 L1745 2013
| |
| 984 879*2^1727602+1 520063 L1935 2013
| |
| 985 338948*5^743996-1 520037 p352 2012
| |
| 986 600921*2^1727190-1 519942 g337 2013
| |
| 987 597*2^1726268+1 519662 L2520 2013
| |
| 988 1151*2^1726187+1 519638 L3262 2013
| |
| 989 813*2^1725925+1 519559 L3171 2013
| |
| 990 729*2^1724434+1 519110 L1484 2013 Generalized Fermat
| |
| 991 615*2^1724209+1 519042 L2967 2013
| |
| 992 1089*2^1723121-1 518715 L1828 2014
| |
| 993 547*2^1723020+1 518684 L1745 2013
| |
| 994 253*2^1722623-1 518564 L145 2007
| |
| 995 2*3^1086112+1 518208 p199 2010 (**)
| |
| 996 113*2^1721438-1 518207 L2484 2011
| |
| 997 1299*2^1721369-1 518187 L1828 2014
| |
| 998 1195*2^1720342+1 517878 L1935 2013
| |
| 999 465*2^1720310+1 517868 L2938 2013
| |
| 1000 1159*2^1719862+1 517734 L3035 2013
| |
| 1001 545*2^1719517+1 517629 L2583 2013
| |
| 1002 235*2^1718787-1 517409 L2444 2014
| |
| 1003 371*2^1717250-1 516947 L3844 2014
| |
| 1004 897*2^1716807+1 516814 L2322 2013
| |
| 1005 383*2^1716780-1 516805 L2519 2014
| |
| 1006 1307*2^1716556-1 516738 L1828 2014
| |
| 1007 1017*2^1715060+1 516288 L1204 2013
| |
| 1008 423*2^1714680+1 516173 L1204 2013
| |
| 1009 975*2^1714004+1 515970 L2117 2012
| |
| 1010 1101*2^1712807+1 515610 L1935 2012
| |
| 1011 175*2^1711779-1 515300 L384 2014
| |
| 1012 1485*2^1711331-1 515166 L1134 2014
| |
| 1013 1029*2^1711100-1 515096 L1828 2014
| |
| 1014 491*2^1710497+1 514914 L3271 2013
| |
| 1015 237*2^1710490+1 514912 L1408 2013
| |
| 1016 387*2^1709440-1 514596 L3844 2014
| |
| 1017 833*2^1708797+1 514403 L1935 2012
| |
| 1018 1035*2^1708648+1 514358 L2973 2012
| |
| 1019 333*2^1708106+1 514194 L3154 2013
| |
| 1020 18656*5^735326-1 513976 p280 2012
| |
| 1021 183*2^1707182-1 513916 L384 2014
| |
| 1022 935*2^1707129+1 513901 L1300 2012
| |
| 1023 889*2^1707094+1 513890 L3262 2012
| |
| 1024 267*2^1705793-1 513498 L1828 2013
| |
| 1025 291*2^1705173-1 513311 L2484 2013
| |
| 1026 165*2^1705093+1 513287 L1158 2013 (**)
| |
| 1027 109*2^1704658+1 513156 L1751 2012
| |
| 1028 727*2^1704196+1 513017 L1741 2012
| |
| 1029 4035*2^1704089-1 512986 L1959 2014
| |
| 1030 2*3^1074726+1 512775 p199 2010 (**)
| |
| 1031 165*2^1703392+1 512775 L2131 2013
| |
| 1032 1195*2^1703221-1 512724 L1828 2014
| |
| 1033 313*2^1703119-1 512693 L1809 2013
| |
| 1034 855*2^1703065+1 512677 L1741 2012
| |
| 1035 283*2^1702599-1 512536 L426 2010
| |
| 1036 851*2^1702569+1 512528 L3344 2012
| |
| 1037 1057*2^1701973-1 512348 L1828 2014
| |
| 1038 1071*2^1701792+1 512294 L3343 2012
| |
| 1039 4187*2^1701140-1 512098 L1959 2014
| |
| 1040 1005*2^1700883-1 512020 L1828 2014
| |
| 1041 233*2^1700734-1 511975 L426 2010
| |
| 1042 1642*30^346592-1 511962 p268 2012
| |
| 1043 927*2^1699446+1 511588 L1741 2012
| |
| 1044 657*2^1699031+1 511463 L3261 2012 (**)
| |
| 1045 1065*2^1698303+1 511244 L1741 2012
| |
| 1046 561*2^1697783+1 511087 L1360 2012
| |
| 1047 5*10^511056-1 511057 p297 2011 Near-repdigit
| |
| 1048 1193*2^1696600-1 510731 L1828 2014
| |
| 1049 259*2^1695723-1 510466 L2444 2014
| |
| 1050 121*2^1695499-1 510399 L62 2005
| |
| 1051 883*2^1694710+1 510162 L1204 2012
| |
| 1052 985*2^1694268+1 510029 L3167 2012 (**)
| |
| 1053 405*2^1693765+1 509877 L1741 2013
| |
| 1054 873*2^1692706+1 509559 L1980 2012
| |
| 1055 299*2^1692271+1 509427 L1741 2013
| |
| 1056 993*2^1691212+1 509109 L3262 2012
| |
| 1057 1369*2^1690781-1 508979 L1828 2014
| |
| 1058 395*2^1690690-1 508951 L1819 2013
| |
| 1059 217*2^1690664+1 508943 L3412 2013
| |
| 1060 599*2^1687659+1 508039 L3262 2012
| |
| 1061 20049*2^1687252-1 507918 L1471 2011
| |
| 1062 915*2^1686699+1 507750 L2520 2012
| |
| 1063 2*3^1063844-1 507583 L426 2012
| |
| 1064 63*2^1686050+1 507554 L2085 2011
| |
| Divides GF(1686047,12) (**)
| |
| 1065 1191*2^1686001+1 507540 L1935 2012
| |
| 1066 693*2^1685544+1 507403 L1354 2012
| |
| 1067 339*2^1685135+1 507279 L1595 2013
| |
| 1068 19*2^1684813-1 507181 L503 2008
| |
| 1069 133*2^1684616+1 507123 L2826 2013
| |
| 1070 110059!+1 507082 p312 2011 Factorial (**)
| |
| 1071 1119*2^1684471-1 507080 L1828 2014
| |
| 1072 415*2^1684046+1 506951 L1990 2013
| |
| 1073 1004*133^238300-1 506117 p289 2013
| |
| 1074 249*2^1681039+1 506046 L1741 2013
| |
| 1075 5374*5^723697-1 505847 p351 2012
| |
| 1076 555*2^1679952+1 505719 L3262 2012
| |
| 1077 193*2^1679938+1 505715 L1741 2013
| |
| 1078 357*2^1679872+1 505695 L3139 2013
| |
| 1079 309*2^1679867+1 505693 L2675 2013 (**)
| |
| 1080 985*2^1679754+1 505660 L1741 2012
| |
| 1081 1065*2^1679402+1 505554 L3262 2012
| |
| 1082 1109*2^1677760-1 505060 L1828 2014
| |
| 1083 139*666^178851-1 504984 L2054 2011
| |
| 1084 559*2^1677446+1 504965 L3262 2012
| |
| 1085 411*2^1677196+1 504889 L2734 2013 (**)
| |
| 1086 905*2^1677085+1 504856 L3249 2012
| |
| 1087 60357*2^1676907+1 504805 L587 2011
| |
| 1088 567*2^1676783+1 504765 L1576 2012
| |
| 1089 255*2^1675403+1 504349 L1741 2013
| |
| 1090 95*2^1674777+1 504161 L1224 2011 (**)
| |
| 1091 1043*2^1674573+1 504100 L3338 2012
| |
| 1092 699*2^1674293+1 504016 L2366 2012
| |
| 1093 1355*2^1674156-1 503975 L1828 2014
| |
| 1094 93*2^1673893+1 503894 L2085 2011
| |
| 1095 173*2^1673881+1 503891 L3234 2013
| |
| 1096 1333*2^1673867-1 503888 L1828 2014
| |
| 1097 879*2^1672525+1 503484 L1741 2012
| |
| 1098 987*2^1672475+1 503469 L1745 2012
| |
| 1099 1193*2^1672244-1 503399 L1828 2014
| |
| 1100 847*2^1670014+1 502728 L3173 2012
| |
| 1101 141*2^1669965+1 502712 L3294 2013 (**)
| |
| 1102 55*2^1669798+1 502662 L2518 2011
| |
| Divides GF(1669797,12)
| |
| 1103 1089*2^1669361+1 502531 L1584 2012 (**)
| |
| 1104 161*2^1668927+1 502400 L2520 2013
| |
| 1105 525*2^1668316+1 502216 L3221 2012
| |
| 1106 15*2^1667744+1 502043 g279 2007 (**)
| |
| 1107 2^1667321-2^833661+1 501914 L137 2011
| |
| Gaussian Mersenne norm 38?
| |
| 1108 195*2^1667115-1 501854 L1828 2014
| |
| 1109 149183*2^1666957+1 501810 g346 2005
| |
| 1110 205*2^1666435-1 501650 L2444 2014
| |
| 1111 99*2^1665995+1 501517 L2121 2011 (**)
| |
| 1112 403*2^1664194+1 500975 L2626 2013
| |
| 1113 233*2^1662513+1 500469 L3035 2013
| |
| 1114 441*2^1662069+1 500336 L3113 2013
| |
| 1115 533*2^1660425+1 499841 L2117 2012
| |
| 1116 825*2^1660087+1 499739 L2366 2012
| |
| 1117 63*2^1659338-1 499513 L503 2008
| |
| 1118 521*2^1659077+1 499435 L3262 2012
| |
| 1119 399*2^1659001-1 499412 L1819 2014
| |
| 1120 393*2^1658625+1 499299 L3409 2013
| |
| 1121 239*30^337990-1 499255 p268 2012
| |
| 1122 171*2^1658303+1 499202 L1300 2013
| |
| 1123 257*2^1658254-1 499187 L2444 2014
| |
| 1124 1323*2^1655130-1 498247 L1828 2014
| |
| 1125 297*2^1655042-1 498220 L2074 2013
| |
| 1126 61*2^1654383-1 498021 L503 2008
| |
| 1127 1047*2^1653096+1 497635 L1792 2012
| |
| 1128 1163*2^1652438-1 497437 L1828 2014
| |
| 1129 68*23^365239+1 497358 p261 2009
| |
| 1130 499*2^1651814+1 497249 L1842 2013
| |
| 1131 1119*2^1651684-1 497210 L1828 2014
| |
| 1132 689*2^1651563+1 497173 L1204 2012
| |
| 1133 143*2^1650689+1 496910 L1751 2012 (**)
| |
| 1134 1485*2^1650597+1 496883 L1134 2014
| |
| 1135 785*2^1650459+1 496841 L2876 2012 (**)
| |
| 1136 1023*2^1649882-1 496667 L1828 2014
| |
| 1137 233*2^1649741+1 496624 L3405 2013
| |
| 1138 183*2^1649506+1 496554 L2520 2013 (**)
| |
| 1139 69*2^1649423-1 496528 L621 2008
| |
| 1140 925*2^1649360+1 496510 L3262 2012
| |
| 1141 469949*2^1649228-1 496473 L160 2007
| |
| 1142 1383*2^1648494-1 496250 L1828 2014
| |
| 1143 295*2^1648168+1 496151 L2826 2013 (**)
| |
| 1144 1071*2^1647962-1 496090 L1828 2014
| |
| 1145 309*2^1647947-1 496084 L2028 2012
| |
| 1146 209*2^1647640-1 495992 L2338 2012
| |
| 1147 199*2^1647595-1 495978 L2074 2014
| |
| 1148 445*2^1646888+1 495766 L1300 2013
| |
| 1149 331*2^1646668+1 495699 L2241 2013
| |
| 1150 49*2^1646042+1 495510 L2516 2011
| |
| Generalized Fermat (**)
| |
| 1151 381*2^1646029-1 495507 L1809 2014
| |
| 1152 31347*2^1645868+1 495461 L3886 2014
| |
| 1153 72532*5^708453-1 495193 p341 2012
| |
| 1154 81*2^1643428+1 494724 g418 2009 Generalized Fermat
| |
| 1155 771*2^1643321+1 494692 L1741 2012
| |
| 1156 933*2^1642574+1 494468 L2826 2012
| |
| 1157 1101*2^1641145-1 494037 L1828 2014
| |
| 1158 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall
| |
| 1159 265*2^1639448+1 493526 L2322 2013
| |
| 1160 315*2^1639432-1 493521 L1827 2011
| |
| 1161 251048373*2^1638322+1 493193 p221 2009
| |
| 1162 125522417*2^1638323+1 493193 p221 2009
| |
| 1163 250171825*2^1638322+1 493193 p221 2009
| |
| 1164 1000628481*2^1638320+1 493193 p221 2009
| |
| 1165 531*2^1637465+1 492929 L2322 2012
| |
| 1166 179*2^1636808-1 492731 L2444 2014
| |
| 1167 1135*2^1635787-1 492425 L1828 2014
| |
| 1168 765*2^1635531+1 492347 L3035 2012
| |
| 1169 871*2^1635488+1 492334 L3108 2012
| |
| 1170 369*2^1635299-1 492277 L1809 2014
| |
| 1171 169*2^1635086+1 492213 L1130 2013 Generalized Fermat
| |
| 1172 277*2^1634878+1 492150 L1300 2013
| |
| 1173 971*2^1633735+1 491807 L2735 2012 (**)
| |
| 1174 645*2^1633521+1 491742 L3035 2012
| |
| 1175 1185*2^1632895+1 491554 L2989 2012
| |
| 1176 267*2^1632893-1 491553 L1828 2013
| |
| 1177 539*2^1632705+1 491496 L3237 2012
| |
| 1178 53*2^1632590-1 491461 L2055 2011
| |
| 1179 675*2^1632285+1 491370 L3260 2012
| |
| 1180 937*2^1632080+1 491309 L3221 2012
| |
| 1181 213*2^1632054-1 491300 L1863 2014
| |
| 1182 1245*2^1629370-1 490493 L1828 2014
| |
| 1183 321*2^1629307+1 490473 L2981 2013
| |
| 1184 267*2^1629148-1 490425 L1828 2013
| |
| 1185 555*2^1629059+1 490399 L1741 2012
| |
| 1186 907*2^1628548+1 490245 L2826 2012
| |
| 1187 69*2^1628378+1 490193 L2507 2011
| |
| 1188 113*2^1627496-1 489928 L2484 2011
| |
| 1189 63*2^1626259-1 489555 L1828 2011
| |
| 1190 63*2^1625970+1 489468 L1135 2011
| |
| 1191 975*2^1624794+1 489115 L2085 2012
| |
| 1192 715*2^1624000+1 488876 L3335 2012
| |
| 1193 897*2^1623927+1 488854 L3173 2012
| |
| 1194 1107*2^1622806-1 488517 L1828 2014
| |
| 1195 651*2^1621489+1 488120 L3141 2012
| |
| 1196 939*2^1621215+1 488038 L3312 2012
| |
| 1197 1179*2^1621053-1 487989 L1828 2014
| |
| 1198 225*2^1620601-1 487852 L2074 2013
| |
| 1199 913*2^1619004+1 487372 L3167 2012
| |
| 1200 269*2^1618877+1 487333 L1741 2013
| |
| 1201 183*2^1618775-1 487303 L384 2014
| |
| 1202 117*2^1618434-1 487200 L384 2014
| |
| 1203 2*626^174203+1 487172 L1471 2011
| |
| 1204 495*2^1616716+1 486683 L2967 2013
| |
| 1205 825*2^1616204+1 486529 L3014 2012
| |
| 1206 87*2^1616138-1 486508 L1828 2011
| |
| 1207 1039*2^1616090+1 486495 L3173 2012
| |
| 1208 1305*2^1616072-1 486490 L1828 2014
| |
| 1209 357*2^1615655+1 486364 L3422 2013
| |
| 1210 4121*2^1615478-1 486311 L1959 2014
| |
| 1211 9101981*2^1612898-1 485538 L1134 2014
| |
| 1212 39*2^1612681+1 485467 L1379 2011
| |
| 1213 395*2^1611672-1 485165 L1819 2013
| |
| 1214 31*2^1611311-1 485055 L330 2010
| |
| 1215 713*2^1610773+1 484894 L3110 2012
| |
| 1216 133*2^1609799-1 484600 L1959 2014
| |
| 1217 459*2^1609603+1 484542 L2787 2013
| |
| 1218 1017*2^1609428-1 484490 L1828 2014
| |
| 1219 569*2^1608879+1 484324 L333 2012
| |
| 1220 521*2^1608779+1 484294 L2051 2012
| |
| 1221 1041*2^1607579-1 483933 L1828 2014
| |
| 1222 81*2^1606848+1 483712 gt 2007 Generalized Fermat
| |
| 1223 1291*2^1606629-1 483647 L1828 2014
| |
| 1224 465*2^1606272+1 483539 L2826 2013
| |
| 1225 1113*2^1606260-1 483536 L1828 2014
| |
| 1226 1109*2^1606173+1 483510 L1935 2012
| |
| 1227 288*706^169692+1 483422 p268 2013
| |
| 1228 183*2^1605657+1 483354 L2085 2013
| |
| 1229 486*187^212627+1 483058 p289 2012
| |
| 1230 48*580^174782-1 483000 p355 2013
| |
| 1231 1009*2^1602478+1 482397 L1300 2012
| |
| 1232 2*3^1010743-1 482248 L426 2011 (**)
| |
| 1233 959*2^1600467+1 481792 L1745 2012
| |
| 1234 1305*2^1600351-1 481757 L1828 2014
| |
| 1235 1073*2^1600077+1 481675 L3110 2012
| |
| 1236 335*2^1597932-1 481028 L3844 2014
| |
| 1237 555*2^1597517+1 480904 L2366 2012
| |
| 1238 15*2^1597510+1 480900 g279 2006 (**)
| |
| 1239 305*2^1597089+1 480775 L2520 2013
| |
| 1240 216290*167^216290-1 480757 L2777 2012 Generalized Woodall
| |
| 1241 235*2^1596836+1 480698 L2085 2013
| |
| 1242 391*2^1596805-1 480689 L3870 2014
| |
| 1243 1033*2^1596708+1 480661 L3173 2012
| |
| 1244 135*2^1596454+1 480583 L2532 2013
| |
| 1245 1151*2^1596226-1 480515 L1828 2014
| |
| 1246 659*2^1595363+1 480255 L1935 2012
| |
| 1247 315*2^1595314+1 480240 L3397 2013 (**)
| |
| 1248 69*2^1595083+1 480170 L2085 2011 (**)
| |
| 1249 1163*2^1594568-1 480016 L1828 2014
| |
| 1250 1113*2^1594402+1 479966 L1300 2012
| |
| 1251 58753*2^1594323-1 479944 p190 2006
| |
| 1252 555*2^1593788+1 479781 L3035 2012
| |
| 1253 481*2^1593660+1 479743 L1204 2013
| |
| 1254 1197*2^1593401-1 479665 L1828 2014
| |
| 1255 1147*2^1593256+1 479621 L3035 2012
| |
| 1256 737*2^1592724-1 479461 L191 2006
| |
| 1257 79*2^1592422+1 479369 L1885 2011 (**)
| |
| 1258 853*2^1592254+1 479320 L3035 2012
| |
| 1259 110413*2^1591999-1 479245 L111 2005
| |
| 1260 99*2^1591984-1 479237 L282 2009
| |
| 1261 1179*2^1591362+1 479051 g387 2006
| |
| 1262 875*2^1591229+1 479011 L3221 2012
| |
| 1263 1377*2^1591036-1 478953 L1828 2014
| |
| 1264 65623*2^1590940+1 478926 L3886 2014
| |
| 1265 135*2^1590711+1 478854 L1204 2013
| |
| 1266 169*2^1590665-1 478841 L2074 2014
| |
| 1267 1227*2^1590433-1 478772 L1828 2014
| |
| 1268 279*2^1590369-1 478752 L1828 2013
| |
| 1269 1135*2^1590353-1 478748 L1828 2014
| |
| 1270 121*2^1589157-1 478387 L65 2005
| |
| 1271 285*2^1588353+1 478145 L1733 2013
| |
| 1272 1281*2^1587882-1 478004 L1828 2014
| |
| 1273 263*2^1587302-1 477828 L2101 2012
| |
| 1274 289*2^1587151-1 477783 L1828 2011
| |
| 1275 1197*2^1587140+1 477780 L3260 2012
| |
| 1276 19502212^65536+1 477763 p160 2005 Generalized Fermat
| |
| 1277 1191*2^1586696+1 477647 L2876 2012
| |
| 1278 1039*2^1586474+1 477580 L1502 2012
| |
| 1279 261*2^1586347+1 477541 L3237 2013
| |
| 1280 1221*2^1585485-1 477282 L1828 2014
| |
| 1281 277*2^1584740+1 477057 L1502 2013
| |
| 1282 1908*22^355313+1 476984 L1471 2013
| |
| 1283 1017*2^1584225-1 476903 L1828 2014
| |
| 1284 393*2^1583890-1 476801 L3844 2014
| |
| 1285 763*2^1583512+1 476688 L1935 2012
| |
| 1286 277*2^1583097-1 476563 L2484 2013
| |
| 1287 855*2^1582921+1 476510 L3035 2012
| |
| 1288 1098133#-1 476311 p346 2012 Primorial (**)
| |
| 1289 (2^64-189)*10^476124+1 476144 p342 2013
| |
| 1290 311*2^1581686-1 476138 L623 2009
| |
| 1291 87*2^1580858+1 475888 L2487 2011
| |
| Divides GF(1580856,6) (**)
| |
| 1292 1185*2^1580824-1 475879 L1828 2014
| |
| 1293 989*2^1580147+1 475675 L3333 2012
| |
| 1294 159*2^1579426+1 475457 L3179 2013
| |
| 1295 4494381*2^1579256+1 475411 L2425 2011
| |
| 1296 3437965*2^1579256+1 475410 L2425 2011
| |
| 1297 552073*2^1579256+1 475410 L2425 2011
| |
| 1298 396687*2^1579256+1 475410 L2425 2011
| |
| 1299 1167*2^1579018+1 475335 L1728 2012
| |
| 1300 603*2^1578398+1 475148 L333 2012
| |
| 1301 2488*5^679769-1 475142 p321 2011
| |
| 1302 1195*2^1577839-1 474980 L1828 2014
| |
| 1303 17684828^65536+1 474979 g410 2007 Generalized Fermat
| |
| 1304 17655444^65536+1 474932 g410 2007 Generalized Fermat
| |
| 1305 17629398^65536+1 474890 g410 2007 Generalized Fermat
| |
| 1306 365*2^1577413+1 474852 L1204 2013 (**)
| |
| 1307 553*2^1577344+1 474831 L3260 2012
| |
| 1308 909*2^1576339+1 474529 L2085 2012
| |
| 1309 805*2^1576258+1 474504 L3035 2012
| |
| 1310 171*2^1575999-1 474426 L384 2014
| |
| 1311 99*2^1575803+1 474366 L1500 2011
| |
| 1312 373*2^1575751-1 474351 L1819 2012
| |
| 1313 1003*2^1575486+1 474272 L1484 2012
| |
| 1314 29*2^1574753+1 474050 L391 2008
| |
| 1315 1347*2^1574633-1 474015 L1828 2014
| |
| 1316 67*2^1573454+1 473659 L1125 2011 (**)
| |
| 1317 703*2^1572182+1 473277 L2366 2012
| |
| 1318 175*2^1571521-1 473078 L2074 2013
| |
| 1319 111*2^1570718-1 472836 L1862 2012
| |
| 1320 26*800^162819+1 472680 p355 2012
| |
| 1321 429*2^1569942+1 472603 L2675 2013
| |
| 1322 4183*2^1568799-1 472260 L1959 2014
| |
| 1323 197*2^1568755+1 472245 L1204 2013
| |
| 1324 483*2^1568404+1 472140 L1204 2013
| |
| 1325 139*2^1567874+1 471980 p189 2006
| |
| 1326 1345*2^1567289-1 471805 L1828 2014
| |
| 1327 103040!-1 471794 p301 2010 Factorial (**)
| |
| 1328 331882*5^674961-1 471784 p333 2011
| |
| 1329 191*2^1567005+1 471718 L3035 2013
| |
| 1330 69*2^1566375-1 471528 L1828 2011
| |
| 1331 1079*2^1565923+1 471393 L1344 2012
| |
| 1332 285*2^1565353-1 471221 L3202 2013
| |
| 1333 729*366^183817-1 471215 L2054 2011
| |
| 1334 285*2^1563167-1 470563 L3202 2013
| |
| 1335 1047*2^1563150+1 470559 L3221 2012 (**)
| |
| 1336 "19000302866132191930...(470418 other digits)...64447092025915867137"
| |
| 470458 p360 2013
| |
| 1337 103*2^1562619-1 470398 L2484 2012
| |
| 1338 149*2^1561951+1 470197 L2322 2013
| |
| 1339 891*2^1561849+1 470167 L2626 2012
| |
| 1340 93*2^1561686+1 470117 L1741 2011 (**)
| |
| 1341 931*2^1561084+1 469937 L1167 2012
| |
| 1342 695*2^1560515+1 469765 L2117 2012
| |
| 1343 219*2^1560099+1 469639 L1505 2013
| |
| 1344 371*2^1559073+1 469331 L1745 2013
| |
| 1345 651*2^1558979+1 469303 L3329 2012
| |
| 1346 817*2^1554994+1 468103 L2085 2012
| |
| 1347 117*2^1554601-1 467984 L3519 2013
| |
| 1348 1185*2^1553995+1 467803 L2366 2012
| |
| 1349 161*2^1553570-1 467674 L177 2011
| |
| 1350 1043*2^1553422-1 467630 L1828 2014
| |
| 1351 1361*2^1552370-1 467314 L1828 2014
| |
| 1352 1323*2^1551755-1 467128 L1828 2014
| |
| 1353 1071*2^1548940+1 466281 L1204 2012
| |
| 1354 1021*2^1548585-1 466174 L1828 2014
| |
| 1355 52*701^163776+1 466063 p268 2013
| |
| 1356 1199*2^1548171+1 466049 L2981 2012
| |
| 1357 95*10^466002-1 466004 L3735 2014 Near-repdigit
| |
| 1358 189*2^1547744-1 465920 L384 2014
| |
| 1359 363*2^1547344-1 465800 L3870 2014
| |
| 1360 409*2^1546542+1 465559 L3248 2013
| |
| 1361 135*2^1545961+1 465383 L2549 2013 (**)
| |
| 1362 539*2^1545909+1 465368 L3327 2012
| |
| 1363 477*2^1545648+1 465290 L1484 2013 (**)
| |
| 1364 4087*2^1545033-1 465105 L1959 2014
| |
| 1365 81*2^1544545+1 464957 gt 2007
| |
| 1366 1003*2^1544288+1 464881 L1129 2012
| |
| 1367 5*10^464843-1 464844 p297 2011 Near-repdigit
| |
| 1368 95*2^1543676-1 464695 L2338 2011
| |
| 1369 227*2^1542323+1 464288 L1204 2013
| |
| 1370 703*2^1542084+1 464217 L2038 2012
| |
| 1371 149*2^1541152-1 463936 L384 2013
| |
| 1372 53*2^1541133+1 463929 L1158 2011 (**)
| |
| 1373 83*2^1540750-1 463814 L1959 2011
| |
| 1374 1061*2^1540377+1 463703 L2322 2012
| |
| 1375 315*2^1539539-1 463450 L1827 2011
| |
| 1376 395*2^1538975+1 463281 L2826 2013
| |
| 1377 6*643^164915+1 463117 L3610 2013
| |
| 1378 205*2^1537779-1 462920 L2444 2014
| |
| 1379 333*2^1537644-1 462880 L1827 2011
| |
| 1380 1077*2^1537453-1 462823 L1828 2013
| |
| 1381 759*2^1537049+1 462701 L1484 2012
| |
| 1382 1245*2^1536104-1 462417 L1828 2013
| |
| 1383 1293*2^1536042-1 462398 L1828 2013
| |
| 1384 699*2^1535678+1 462288 L1122 2012
| |
| 1385 63*2^1535612-1 462268 L1828 2011
| |
| 1386 234847*2^1535589-1 462264 L73 2005
| |
| 1387 8331405*2^1534807-1 462030 L260 2011
| |
| 1388 291*2^1534413-1 461907 L2484 2013
| |
| 1389 393*2^1534045+1 461797 L2826 2013
| |
| 1390 165*2^1533368+1 461592 L3149 2013
| |
| 1391 1203*2^1531143-1 460924 L1828 2013
| |
| 1392 63*2^1530888+1 460846 L2487 2011 (**)
| |
| 1393 41*2^1530313+1 460672 L2131 2011 (**)
| |
| 1394 1195*2^1530031-1 460589 L1828 2013
| |
| 1395 1099*2^1529993-1 460577 L1828 2013
| |
| 1396 347*2^1529964-1 460568 L2235 2013
| |
| 1397 247*2^1529485-1 460424 L2338 2011
| |
| 1398 771*2^1529249+1 460353 L3271 2012
| |
| 1399 941*2^1529195+1 460337 L3110 2012
| |
| 1400 505*2^1529188+1 460335 L2826 2012
| |
| 1401 1105*2^1529161-1 460327 L1828 2013
| |
| 1402 1113*2^1527832-1 459927 L1828 2013
| |
| 1403 279*2^1526518+1 459531 L3173 2013
| |
| 1404 1071*2^1526401+1 459496 L3221 2012
| |
| 1405 121*2^1526097-1 459404 L65 2005
| |
| 1406 115*2^1524183-1 458827 L2074 2013
| |
| 1407 303*2^1523973+1 458765 L1300 2013
| |
| 1408 1265*2^1523548-1 458637 L1828 2013
| |
| 1409 289*2^1522650+1 458366 L1741 2013 Generalized Fermat
| |
| 1410 731*2^1522457+1 458309 L3311 2012
| |
| 1411 1221*2^1522283-1 458256 L1828 2013
| |
| 1412 687*2^1522087+1 458197 L2606 2012
| |
| 1413 165*2^1521629-1 458059 L2055 2011
| |
| 1414 19709699*2^1521540-1 458037 L421 2008
| |
| 1415 1257*2^1521398-1 457990 L1828 2013
| |
| 1416 1425*2^1520604-1 457751 L1134 2014
| |
| 1417 1015*2^1520177-1 457622 L1828 2013
| |
| 1418 375*2^1518534-1 457127 L2235 2013
| |
| 1419 731*2^1518257+1 457044 L1204 2012
| |
| 1420 291*2^1516592+1 456543 L2117 2013
| |
| 1421 243*2^1516368+1 456475 L2038 2013
| |
| 1422 135*2^1515894+1 456332 L1129 2013
| |
| Divides GF(1515890,10)
| |
| 1423 825*2^1515604+1 456246 L3284 2012
| |
| 1424 1169*2^1515073+1 456086 L3110 2012
| |
| 1425 301*2^1514873-1 456025 p281 2010
| |
| 1426 37674760044125*2^1513679-67931 455677 p339 2012 (**)
| |
| 1427 1200007*(2^756839-1)*(1200007*(2^756839-1)+1)-1
| |
| 455675 p168 2014 (**)
| |
| 1428 363*2^1513706-1 455674 L1819 2014
| |
| 1429 237*2^1512216-1 455225 L1828 2013
| |
| 1430 1107*2^1511864-1 455120 L1828 2013
| |
| 1431 93*2^1511692+1 455067 L1135 2011
| |
| 1432 945*2^1511373+1 454972 L3276 2012
| |
| 1433 165*2^1510977+1 454852 L1349 2012
| |
| 1434 735*2^1509857+1 454516 L3319 2012
| |
| 1435 4049*2^1509104-1 454290 L1959 2014
| |
| 1436 4*83^236470+1 453805 p286 2010 Generalized Fermat
| |
| 1437 143*2^1507352-1 453761 L1828 2012
| |
| 1438 7*566^164827-1 453740 L1471 2011
| |
| 1439 1115*2^1505697+1 453264 L3173 2012
| |
| 1440 65*2^1505640-1 453245 L2055 2011
| |
| 1441 431*2^1505493+1 453202 L2520 2013
| |
| 1442 173*2^1504740-1 452975 L2074 2013
| |
| 1443 1127*2^1504700-1 452963 L1828 2013
| |
| 1444 237*2^1503376-1 452564 L1828 2013
| |
| 1445 197*2^1502095+1 452178 L2912 2013 (**)
| |
| 1446 1137*2^1501715+1 452065 L1745 2012
| |
| 1447 907*2^1501169-1 451900 L860 2010
| |
| 1448 1075*2^1500964+1 451839 L2066 2012
| |
| 1449 579*2^1500429+1 451677 L1300 2012
| |
| 1450 13*2^1499876+1 451509 g267 2004
| |
| Divides GF(1499875,3)
| |
| 1451 429*2^1499779+1 451482 L2603 2012
| |
| 1452 147*2^1499333-1 451347 L1959 2013
| |
| 1453 533*2^1499097+1 451276 L1741 2012
| |
| 1454 95*2^1498399+1 451066 L2494 2011
| |
| 1455 27994*5^645221-1 450995 p324 2011
| |
| 1456 4003*2^1496871-1 450607 L1959 2014
| |
| 1457 191*2^1496507+1 450496 L1229 2012 (**)
| |
| 1458 687*2^1496330+1 450444 L1745 2012
| |
| 1459 1351*2^1495467-1 450184 L1828 2013
| |
| 1460 32*26^318071+1 450064 L1471 2012
| |
| 1461 1047*2^1494761-1 449971 L1828 2013
| |
| 1462 283*2^1494614+1 449927 L2984 2012
| |
| 1463 749*2^1494203+1 449803 L2706 2012
| |
| 1464 131*2^1494099+1 449771 L2959 2012
| |
| Divides Fermat F(1494096) (**)
| |
| 1465 1365*2^1493923-1 449719 L1828 2013
| |
| 1466 93*2^1493877+1 449704 L2085 2011 (**)
| |
| 1467 262172*5^643342-1 449683 p323 2011
| |
| 1468 651*2^1493757+1 449669 L2583 2012
| |
| 1469 455*2^1493715+1 449656 L2734 2012
| |
| 1470 711*2^1493231+1 449511 L1842 2012
| |
| 1471 1287*2^1493088-1 449468 L1828 2013
| |
| 1472 673*2^1492542+1 449303 L2826 2012
| |
| 1473 1347*2^1492537-1 449302 L1828 2013
| |
| 1474 1269*2^1492195-1 449199 L1828 2013
| |
| 1475 1023*2^1492030-1 449149 L1828 2013
| |
| 1476 7*2^1491852+1 449094 p166 2005
| |
| Divides GF(1491851,6)
| |
| 1477 357*2^1491595+1 449018 L2960 2012
| |
| 1478 303*2^1491450+1 448974 L1498 2012
| |
| 1479 2232007*2^1490605-1 448724 L4 2003
| |
| 1480 4185*2^1490448-1 448674 L1959 2014
| |
| 1481 147*2^1490274+1 448620 L3030 2012
| |
| 1482 1155*2^1490176-1 448591 L1828 2013
| |
| 1483 789*2^1489887+1 448504 L1214 2012
| |
| 1484 877*2^1489150+1 448282 L3019 2012
| |
| 1485 49568*5^640900-1 447975 p321 2011
| |
| 1486 191*2^1487775+1 447868 L1387 2012
| |
| 1487 1181*2^1487725+1 447853 L1129 2012
| |
| 1488 1077*2^1487269-1 447716 L1828 2013
| |
| 1489 61*2^1487125-1 447672 L1828 2011
| |
| 1490 103*2^1486695-1 447542 L2484 2012
| |
| 1491 1239*2^1486540-1 447497 L1828 2013
| |
| 1492 1155*2^1486428+1 447463 L2957 2012
| |
| 1493 57*2^1486214-1 447397 L1828 2011
| |
| 1494 1286*3^937499+1 447304 L2777 2012
| |
| Generalized Cullen (**)
| |
| 1495 4137*2^1484145-1 446776 L1959 2014
| |
| 1496 341*2^1484130-1 446771 L1819 2014
| |
| 1497 377*2^1483586-1 446607 L1819 2013
| |
| 1498 62*107^219967+1 446400 p289 2013
| |
| 1499 8922449*2^1482840-1 446387 L536 2011
| |
| 1500 355*2^1482390+1 446247 L2734 2012
| |
| 1501 9*2^1481821-1 446074 L503 2008
| |
| 1502 503*2^1481165+1 445878 L1204 2012
| |
| 1503 583*2^1480974+1 445821 L1935 2012
| |
| 1504 5*10^445773-1 445774 p297 2011 Near-repdigit
| |
| 1505 395*2^1480715+1 445743 L1792 2012
| |
| 1506 1293*2^1480046-1 445542 L1828 2013
| |
| 1507 725*2^1479843+1 445480 L2627 2012
| |
| 1508 4143*2^1479570-1 445399 L1959 2014
| |
| 1509 2421*2^1479236+1 445298 p335 2012
| |
| 1510 1185*2^1478556+1 445093 L2956 2012
| |
| 1511 609*2^1478341+1 445028 L2987 2012
| |
| 1512 29*2^1478344-1 445028 L10 2005
| |
| 1513 705*2^1478286+1 445012 L1158 2012
| |
| 1514 1071*2^1478005-1 444927 L1828 2013
| |
| 1515 4127*2^1477320-1 444722 L1959 2014
| |
| 1516 847*2^1477272+1 444707 L2935 2012
| |
| 1517 138835*2^1476392+1 444444 L3494 2013
| |
| 1518 27*2^1476347+1 444427 g279 2005 (**)
| |
| 1519 1329*2^1476061-1 444342 L1828 2013
| |
| 1520 163*2^1475932+1 444303 L2955 2012
| |
| 1521 371*2^1475337+1 444124 L2958 2012
| |
| 1522 1159*2^1475217-1 444088 L1828 2013
| |
| 1523 333*2^1474766-1 443952 L1827 2011
| |
| 1524 4025*2^1474366-1 443832 L1959 2014
| |
| 1525 176660*18^353320-1 443519 p325 2011
| |
| Generalized Woodall (**)
| |
| 1526 69*2^1473217-1 443485 L2055 2011
| |
| 1527 327*2^1473201-1 443481 L1827 2011
| |
| 1528 357*2^1473125-1 443458 L1819 2013
| |
| 1529 1263*2^1472875-1 443383 L1828 2013
| |
| 1530 127*2^1472718+1 443335 L2954 2012
| |
| 1531 43994*6^569498-1 443161 p267 2010
| |
| 1532 325627*2^1472117-1 443157 L111 2005
| |
| 1533 1317*2^1471508-1 442972 L1828 2013
| |
| 1534 133*2^1471408+1 442941 L2139 2012 (**)
| |
| 1535 1197*2^1471378-1 442932 L1828 2013
| |
| 1536 207*2^1471290+1 442905 L1300 2012 (**)
| |
| 1537 579*2^1471002+1 442819 L2901 2012
| |
| 1538 1291*2^1470905-1 442790 L1828 2013
| |
| 1539 303*2^1470065+1 442537 L2058 2012
| |
| 1540 629*2^1469471+1 442358 L1999 2012
| |
| 1541 1155*2^1468763-1 442145 L1828 2013
| |
| 1542 55*2^1468439-1 442046 L2074 2013
| |
| 1543 1467763*2^1467763-1 441847 L381 2007 Woodall
| |
| 1544 77*2^1467554-1 441780 L145 2006
| |
| 1545 1073*2^1467421+1 441741 L2121 2012
| |
| 1546 105*2^1467388-1 441730 L384 2010
| |
| 1547 1295*2^1467128-1 441653 L1828 2013
| |
| 1548 253*2^1465908+1 441285 L1498 2012
| |
| 1549 279*2^1465658+1 441210 L2121 2012 (**)
| |
| 1550 7673*2^1464988-1 441010 L2012 2013
| |
| 1551 179*2^1464720-1 440927 L2074 2012
| |
| 1552 4035*2^1463909-1 440685 L1959 2014
| |
| 1553 533*2^1462557+1 440277 L1186 2012
| |
| 1554 165*2^1462368-1 440219 L2101 2011
| |
| 1555 565*2^1462336+1 440210 L2127 2012
| |
| 1556 1193*2^1462209+1 440172 L2950 2012
| |
| 1557 187*2^1461697-1 440017 L1959 2014
| |
| 1558 99*2^1461496-1 439957 L282 2009
| |
| 1559 821*2^1461453+1 439945 L2085 2012
| |
| 1560 83*2^1461350-1 439913 L1959 2011
| |
| 1561 647*2^1461075+1 439831 L2734 2012
| |
| 1562 4073*2^1460504-1 439660 L1959 2014
| |
| 1563 921*2^1460168+1 439558 L2412 2012
| |
| 1564 1035*2^1460028-1 439516 L1828 2012
| |
| 1565 4023*2^1459958-1 439495 L1959 2014
| |
| 1566 4123*2^1459531-1 439367 L1959 2014
| |
| 1567 361*2^1459308+1 439299 L1158 2012 Generalized Fermat
| |
| 1568 315*2^1459160+1 439254 L2127 2012
| |
| 1569 1003*2^1458560+1 439074 L1214 2012
| |
| 1570 179*2^1457415+1 438728 L1224 2012
| |
| 1571 505*2^1457394+1 438723 L2121 2012
| |
| 1572 1179*2^1456957-1 438591 L1828 2012
| |
| 1573 313*2^1456431-1 438432 L1809 2013
| |
| 1574 301*2^1455620+1 438188 L1999 2012
| |
| 1575 83*2^1455358-1 438109 L1959 2011
| |
| 1576 701*2^1455225+1 438070 L2962 2012
| |
| 1577 207*2^1453970-1 437691 L330 2013
| |
| 1578 1085*2^1453676-1 437604 L1828 2012
| |
| 1579 379*2^1453534+1 437560 L2826 2012
| |
| 1580 281*2^1453426-1 437528 L2101 2012
| |
| 1581 967*2^1453316+1 437495 L2856 2012
| |
| 1582 21*2^1452771-1 437329 L503 2008
| |
| 1583 911*2^1450865+1 436757 L1158 2012
| |
| 1584 995*2^1450439+1 436629 L2139 2012
| |
| 1585 1101*2^1450203-1 436558 L1828 2012
| |
| 1586 1139*2^1450029+1 436506 L1509 2012
| |
| 1587 9101981*2^1449942-1 436483 L1134 2013
| |
| 1588 1121*2^1449665+1 436396 L2785 2012
| |
| 1589 855*2^1449637+1 436388 L1336 2012
| |
| 1590 77743*6^560745-1 436350 p267 2010
| |
| 1591 909*2^1449002+1 436197 L2125 2012
| |
| 1592 23*2^1448461+1 436032 L170 2008
| |
| 1593 4061*2^1448270-1 435977 L1959 2014
| |
| 1594 1027*2^1448217-1 435960 L1828 2013
| |
| 1595 395*2^1447971+1 435886 L1935 2012
| |
| 1596 1051*2^1447928+1 435873 L2949 2012
| |
| 1597 10107*6^559967+1 435744 p254 2012
| |
| 1598 1197*2^1447460-1 435732 L1828 2013
| |
| 1599 969*2^1447062+1 435613 L1745 2012
| |
| 1600 1195*2^1446859-1 435552 L1828 2013
| |
| 1601 711*2^1446472+1 435435 L1224 2012
| |
| 1602 1061*2^1445645+1 435186 L2863 2012
| |
| 1603 1125*2^1445487-1 435138 L1828 2013
| |
| 1604 8331405*2^1445428-1 435125 L260 2010
| |
| 1605 923*2^1445405+1 435114 L2942 2012
| |
| 1606 194*165^196199+1 435071 p289 2012
| |
| 1607 4125*2^1445205-1 435054 L1959 2014
| |
| 1608 1233*2^1445171-1 435043 L1828 2013
| |
| 1609 1071*2^1444099-1 434721 L1828 2013
| |
| 1610 855*2^1444094+1 434719 L2604 2012
| |
| 1611 1321*2^1442749-1 434314 L1828 2013
| |
| 1612 705*2^1442509+1 434242 L2085 2012
| |
| 1613 4415*2^1441915+1 434064 L2012 2014
| |
| 1614 345*2^1441905+1 434060 L2604 2012
| |
| 1615 10*802^149319+1 433650 p268 2011
| |
| 1616 589*2^1440410+1 433610 L1336 2012
| |
| 1617 4039*2^1439371-1 433298 L1959 2014
| |
| 1618 1073*2^1439352-1 433292 L1828 2013
| |
| 1619 417*2^1439196+1 433244 L2604 2012
| |
| 1620 851*2^1438625+1 433073 L1728 2012
| |
| 1621 581*2^1438385+1 433000 L2604 2012
| |
| 1622 637*2^1438112+1 432918 L1524 2012
| |
| 1623 9135*2^1438018-1 432891 L2338 2013
| |
| 1624 83*2^1437882-1 432848 L1959 2011
| |
| 1625 133*2^1436963-1 432572 L2074 2014
| |
| 1626 9135*2^1436354-1 432390 L2338 2013
| |
| 1627 969*2^1435731+1 432202 L1509 2012
| |
| 1628 210092*5^618136-1 432064 L2050 2011
| |
| 1629 1377*2^1434985-1 431977 L1828 2013
| |
| 1630 1135*2^1434722+1 431898 L1933 2012
| |
| 1631 19*2^1434165-1 431728 L503 2008
| |
| 1632 825*2^1433899+1 431650 L2127 2012
| |
| 1633 95*2^1433853+1 431635 L2503 2011
| |
| Divides GF(1433852,3)
| |
| 1634 213*2^1433675-1 431582 L1863 2013
| |
| 1635 141*2^1433536+1 431540 L2560 2012
| |
| 1636 987*2^1433326+1 431478 L1158 2012
| |
| 1637 749*2^1433277+1 431463 L2941 2012
| |
| 1638 825*2^1433131+1 431419 L1991 2012
| |
| 1639 1255*2^1432761-1 431308 L1828 2013
| |
| 1640 3303*112^210284+1 430922 p271 2012
| |
| 1641 243*2^1431443-1 430910 L2055 2011
| |
| 1642 1041*2^1431405+1 430899 L1229 2012
| |
| 1643 729*2^1430906+1 430749 L2002 2011 Generalized Fermat
| |
| 1644 1079*2^1430317+1 430572 L2940 2012
| |
| 1645 1031*2^1430239+1 430548 L1129 2012
| |
| 1646 1193*2^1430037+1 430488 L1555 2012
| |
| 1647 2715*2^1429628-1 430365 L1959 2014
| |
| 1648 675*2^1429386+1 430291 L1379 2012
| |
| 1649 267*2^1429060-1 430193 L1828 2013
| |
| 1650 1161*2^1428493-1 430023 L1828 2013
| |
| 1651 45*2^1427666+1 429772 L1446 2010
| |
| 1652 1127*2^1427558-1 429741 L1828 2013
| |
| 1653 270748*5^614625-1 429610 L2050 2011
| |
| 1654 147*2^1426959+1 429560 L2922 2012
| |
| 1655 19681127*2^1426862-1 429536 L466 2012
| |
| 1656 1023*2^1426490+1 429420 L1554 2012
| |
| 1657 94550!-1 429390 p290 2010 Factorial (**)
| |
| 1658 4137*2^1426269-1 429354 L1959 2014
| |
| 1659 2018*162^194314-1 429344 p289 2012
| |
| 1660 113*2^1425998-1 429271 L257 2008
| |
| 1661 4091*2^1424962-1 428960 L1959 2014
| |
| 1662 1129*2^1424494+1 428819 L2939 2012
| |
| 1663 4039*2^1424325-1 428769 L1959 2014
| |
| 1664 1077*2^1424277-1 428754 L1828 2013
| |
| 1665 1169*2^1423969+1 428661 L2948 2012
| |
| 1666 3462728^65536+1 428568 p343 2014 Generalized Fermat
| |
| 1667 3461954^65536+1 428561 p316 2014 Generalized Fermat
| |
| 1668 1299*2^1423389-1 428486 L1828 2013
| |
| 1669 3446048^65536+1 428430 p316 2014 Generalized Fermat
| |
| 1670 561*2^1423021+1 428375 L2945 2012
| |
| 1671 555*2^1422674+1 428271 L2944 2012 (**)
| |
| 1672 3422670^65536+1 428237 p316 2014 Generalized Fermat
| |
| 1673 255*2^1422283-1 428153 L2074 2012
| |
| 1674 21*2^1421741+1 427989 g279 2005 (**)
| |
| 1675 537*2^1421571+1 427939 L2557 2012
| |
| 1676 1335*2^1421366-1 427877 L1828 2013
| |
| 1677 8*3^896701-1 427837 p258 2010
| |
| 1678 65*2^1421088-1 427792 L1828 2011
| |
| 1679 4089*2^1419992-1 427464 L1959 2014
| |
| 1680 9*2^1419855-1 427420 L323 2009
| |
| 1681 1425*2^1419356-1 427272 L1134 2013
| |
| 1682 1047*2^1418968+1 427155 L2093 2012
| |
| 1683 273*2^1418856+1 427121 L2674 2012
| |
| 1684 15*2^1418605+1 427044 g279 2006
| |
| Divides GF(1418600,5), GF(1418601,6) (**)
| |
| 1685 4023*2^1418518-1 427021 L1959 2014
| |
| 1686 399*2^1418376-1 426977 L1819 2013
| |
| 1687 371*2^1417702-1 426774 L1819 2013
| |
| 1688 4017*2^1417682-1 426769 L1959 2014
| |
| 1689 225*2^1417568+1 426733 L2947 2012 Generalized Fermat
| |
| 1690 303*2^1416878+1 426526 L2937 2012
| |
| 1691 29*2^1416873+1 426523 g305 2007
| |
| 1692 61*2^1416365-1 426371 L2055 2011
| |
| 1693 1113*2^1414802-1 425901 L1828 2013
| |
| 1694 659*2^1414237+1 425731 L2453 2012
| |
| 1695 149797*2^1414137-1 425703 L105 2005
| |
| 1696 1087*2^1413982+1 425655 L2934 2012
| |
| 1697 1031*2^1413801+1 425600 L2936 2012
| |
| 1698 2415*2^1413627-1 425548 L1959 2014
| |
| 1699 799*2^1413586+1 425535 L2142 2012
| |
| 1700 266206*5^608649-1 425433 L2050 2011
| |
| 1701 3095674^65536+1 425379 p343 2013 Generalized Fermat
| |
| 1702 199*2^1412913-1 425332 L2074 2013
| |
| 1703 1155*2^1411898-1 425027 L1828 2013
| |
| 1704 1077*2^1411370-1 424868 L1828 2013
| |
| 1705 1083*2^1410817+1 424702 L1562 2012
| |
| 1706 339*2^1410789-1 424693 L1830 2011
| |
| 1707 625*2^1410668+1 424657 L1498 2012
| |
| Generalized Fermat (**)
| |
| 1708 1263*2^1409755-1 424382 L1828 2013
| |
| 1709 445*2^1408906+1 424126 L2544 2012 (**)
| |
| 1710 439*2^1408326+1 423952 L1546 2012
| |
| 1711 93*2^1408246+1 423927 L1207 2011
| |
| 1712 165*2^1408117+1 423888 L2935 2012
| |
| 1713 105*2^1407665-1 423752 L384 2009
| |
| 1714 1485*2^1407544+1 423717 L1134 2013
| |
| 1715 245*2^1407538-1 423714 L1862 2014
| |
| 1716 55*2^1406997-1 423551 L1884 2011
| |
| 1717 143*2^1406788-1 423488 L1828 2012
| |
| 1718 141*2^1404747+1 422874 L1158 2012
| |
| 1719 2829122^65536+1 422816 p343 2012 Generalized Fermat
| |
| 1720 2985*2^1404274-1 422733 L1959 2014
| |
| 1721 4143*2^1404267-1 422731 L1959 2014
| |
| 1722 2715*2^1404211-1 422714 L1959 2014
| |
| 1723 4065*2^1403376-1 422462 L1959 2014
| |
| 1724 2779470^65536+1 422312 p343 2012 Generalized Fermat
| |
| 1725 435*2^1402809+1 422291 L2938 2012
| |
| 1726 647*2^1402275+1 422130 L1158 2012
| |
| 1727 1101*2^1402221+1 422114 L2168 2012
| |
| 1728 1055*2^1402194-1 422106 L1828 2013
| |
| 1729 2744940^65536+1 421956 p343 2012 Generalized Fermat
| |
| 1730 2738848^65536+1 421893 p343 2012 Generalized Fermat
| |
| 1731 1131*2^1401172+1 421798 L1456 2012
| |
| 1732 48697*2^1400872+1 421710 L2012 2014
| |
| 1733 573*2^1400092+1 421473 L2949 2012
| |
| 1734 429*2^1400083+1 421470 L2930 2012 (**)
| |
| 1735 881*2^1399963+1 421434 L1224 2012
| |
| 1736 23*2^1399841+1 421396 L1158 2011
| |
| 1737 127*2^1398889-1 421110 L486 2008
| |
| 1738 241*2^1398869-1 421104 L1828 2013
| |
| 1739 2985*2^1398863-1 421104 L1959 2014
| |
| 1740 125*2^1398712-1 421057 L2101 2012
| |
| 1741 219*2^1398411+1 420966 L1336 2012 (**)
| |
| 1742 1564347*2^1398269-1 420928 L466 2008
| |
| 1743 509765*2^1398269+1 420927 L109 2014
| |
| 1744 31723*2^1398273-507567 420927 p363 2013 (**)
| |
| 1745 2^1398269-1 420921 G1 1996 Mersenne 35 (**)
| |
| 1746 765*2^1398051+1 420859 L2932 2012
| |
| 1747 2925*2^1396366-1 420352 L1959 2014
| |
| 1748 192089*2^1395688-1 420150 L49 2004
| |
| 1749 225*2^1395649-1 420135 L2074 2012
| |
| 1750 85*2^1395605-1 420121 L2338 2011
| |
| 1751 4099*2^1395419-1 420067 L1959 2014
| |
| 1752 1137*2^1395352-1 420046 L1828 2013
| |
| 1753 935*2^1394813+1 419884 L2863 2012
| |
| 1754 4073*2^1394704-1 419852 L1959 2014
| |
| 1755 147*2^1392930+1 419316 L2931 2012 (**)
| |
| 1756 2484264^65536+1 419116 p343 2012 Generalized Fermat
| |
| 1757 2^1392250-4*V(1,4,696123)+1 419110 x41 2014 (**)
| |
| 1758 2483590^65536+1 419108 p316 2012 Generalized Fermat
| |
| 1759 1387*2^1390577-1 418609 L1828 2013
| |
| 1760 1151*2^1390169+1 418486 L1336 2012
| |
| 1761 891*2^1390163+1 418484 L2562 2012
| |
| 1762 77*2^1390004-1 418435 L2074 2011
| |
| 1763 869*2^1389895+1 418404 L1480 2012
| |
| 1764 113*2^1389674-1 418336 L257 2008
| |
| 1765 1073*2^1389616-1 418320 L1828 2013
| |
| 1766 953*2^1389449+1 418269 L1935 2012
| |
| 1767 182402*14^364804-1 418118 p325 2011
| |
| Generalized Woodall (**)
| |
| 1768 2835*2^1388678-1 418038 L1959 2014
| |
| 1769 17*2^1388355+1 417938 g267 2005
| |
| Divides GF(1388354,10)
| |
| 1770 4129*2^1388319-1 417930 L1959 2013
| |
| 1771 413*2^1387625+1 417720 L1357 2012
| |
| 1772 4185*2^1387491-1 417681 L1959 2013
| |
| 1773 1169*2^1387289+1 417619 L2927 2012
| |
| 1774 2336976^65536+1 417377 p316 2012 Generalized Fermat
| |
| 1775 805*2^1386368+1 417342 L2926 2012
| |
| 1776 675*2^1386270+1 417312 L2093 2012
| |
| 1777 771*2^1385696+1 417139 L2110 2012
| |
| 1778 2313394^65536+1 417088 p316 2011 Generalized Fermat
| |
| 1779 427*2^1385238+1 417001 L1204 2012
| |
| 1780 409*2^1384346+1 416733 L1357 2012 (**)
| |
| 1781 4119*2^1383765-1 416559 L1959 2013
| |
| 1782 1047*2^1383252-1 416404 L1828 2013
| |
| 1783 89*2^1383108-1 416359 L1884 2011
| |
| 1784 2251082^65536+1 416311 p316 2011 Generalized Fermat
| |
| 1785 999*2^1382497+1 416177 L1524 2012
| |
| 1786 491*2^1382361+1 416135 L2167 2012
| |
| 1787 1077*2^1382270-1 416108 L1828 2013
| |
| 1788 4041*2^1382149-1 416072 L1959 2013
| |
| 1789 487*2^1382068+1 416047 L2925 2012
| |
| 1790 4005*2^1381901-1 415998 L1959 2013
| |
| 1791 413*2^1381686-1 415932 L1978 2014
| |
| 1792 4099*2^1381491-1 415874 L1959 2013
| |
| 1793 1001*2^1381338-1 415828 L1828 2013
| |
| 1794 609*2^1380766+1 415655 L2785 2012
| |
| 1795 2187182^65536+1 415491 g260 2009 Generalized Fermat
| |
| 1796 2355*2^1379854-1 415381 L1959 2014
| |
| 1797 2177038^65536+1 415359 g260 2008 Generalized Fermat
| |
| 1798 199*2^1379329-1 415222 L2074 2012
| |
| 1799 2162068^65536+1 415162 g260 2008 Generalized Fermat
| |
| 1800 1209*2^1378600-1 415004 L1828 2013
| |
| 1801 1041*2^1377936+1 414804 L1158 2012
| |
| 1802 653*2^1377857+1 414780 L2887 2012
| |
| 1803 1395*2^1377793-1 414761 L1828 2013
| |
| 1804 2445*2^1377351-1 414628 L1959 2014
| |
| 1805 6*10^414508-1 414509 p297 2011 Near-repdigit
| |
| 1806 139*2^1376635-1 414411 L384 2013
| |
| 1807 4143*2^1376590-1 414399 L1959 2013
| |
| 1808 151*2^1376256+1 414297 L1751 2011
| |
| 1809 129*2^1376223-1 414287 L1959 2011
| |
| 1810 1005*2^1375758+1 414148 L2606 2012
| |
| 1811 481*2^1374765-1 413849 L1978 2014
| |
| 1812 65*2^1374574-1 413790 L2055 2011
| |
| 1813 163*2^1374474+1 413761 L2933 2012 (**)
| |
| 1814 147*2^1374216-1 413683 L1959 2011
| |
| 1815 (2^64-189)*10^413500+1 413520 p342 2012
| |
| 1816 981*2^1373643+1 413511 L2125 2012
| |
| 1817 231*2^1372505+1 413168 L2169 2012
| |
| 1818 347*2^1372215+1 413081 L2085 2012
| |
| 1819 321*2^1371846-1 412970 L1830 2011
| |
| 1820 237*2^1371630-1 412905 L1828 2013
| |
| 1821 4179*2^1371539-1 412879 L1959 2013
| |
| 1822 2895*2^1371308-1 412809 L1959 2014
| |
| 1823 73*2^1370742+1 412637 g418 2009
| |
| 1824 955*2^1369986+1 412410 L2928 2012
| |
| 1825 4035*2^1369909-1 412388 L1959 2013
| |
| 1826 195*2^1369746-1 412337 L2101 2011
| |
| 1827 771*2^1369709+1 412327 L2453 2012
| |
| 1828 1169*2^1369516-1 412269 L1828 2013
| |
| 1829 1235*2^1369070-1 412135 L1828 2013
| |
| 1830 1055*2^1368554-1 411979 L1828 2013
| |
| 1831 15*2^1368428+1 411940 g279 2006 (**)
| |
| 1832 609*2^1368375+1 411925 L2946 2012
| |
| 1833 243*2^1368212-1 411876 L2055 2011
| |
| 1834 663*2^1368094-1 411841 L2519 2014
| |
| 1835 1093*2^1367891-1 411780 L1828 2013
| |
| 1836 789*2^1367445+1 411645 L2030 2012
| |
| 1837 245*2^1367128-1 411549 L1862 2011
| |
| 1838 51017*6^528803-1 411494 p258 2010
| |
| 1839 237*2^1366717-1 411426 L1828 2013
| |
| 1840 955*2^1366700+1 411421 L2929 2012
| |
| 1841 778*73^220782+1 411392 L587 2013
| |
| 1842 497*2^1366295+1 411299 L2915 2012
| |
| 1843 1085*2^1366270-1 411292 L1828 2013
| |
| 1844 2325*2^1366249-1 411286 L1959 2014
| |
| 1845 585*2^1366140-1 411252 L1816 2014
| |
| 1846 815*2^1365752-1 411136 L1809 2014
| |
| 1847 1695*2^1365701+1 411121 L527 2014
| |
| 1848 1874512^65536+1 411101 g413 2008 Generalized Fermat
| |
| 1849 933*2^1365580-1 411084 L1809 2014
| |
| 1850 1055*2^1365519+1 411066 L2453 2012
| |
| 1851 77*2^1365452-1 411044 L2074 2011
| |
| 1852 45*2^1365167+1 410958 L1446 2010
| |
| 1853 273*2^1365107-1 410941 L1828 2013
| |
| 1854 241489*2^1365062+1 410930 L101 2005
| |
| 1855 19861029*2^1365009-1 410916 L895 2012
| |
| 1856 869*2^1364737+1 410830 L2924 2012
| |
| 1857 321*2^1363671-1 410509 L1830 2011
| |
| 1858 555*2^1363577+1 410481 L2413 2012
| |
| 1859 1383*2^1363428-1 410436 L1828 2013
| |
| 1860 897*2^1363405-1 410429 L1809 2014
| |
| 1861 1828502^65536+1 410393 GF2 2005 Generalized Fermat
| |
| 1862 411*2^1363094-1 410335 L1816 2014
| |
| 1863 1035*2^1362722-1 410224 L1828 2013
| |
| 1864 171*2^1362662-1 410205 L1959 2011
| |
| 1865 107*2^1362654-1 410202 L621 2009
| |
| 1866 301016*5^586858-1 410202 L2050 2011
| |
| 1867 1123*2^1361432+1 409835 L1300 2012
| |
| 1868 47395*2^1361124+1 409744 L2012 2014
| |
| 1869 857*2^1360690-1 409612 L1809 2014
| |
| 1870 885*2^1359353-1 409209 L1809 2014
| |
| 1871 629*2^1359164-1 409152 L2257 2014
| |
| 1872 51*2^1358372+1 408913 L1446 2010 (**)
| |
| 1873 87*2^1358189-1 408858 L2055 2011
| |
| 1874 939*2^1358015-1 408807 L1809 2014
| |
| 1875 205*2^1358016+1 408806 L1745 2012
| |
| 1876 35*2^1357881+1 408765 g279 2006 (**)
| |
| 1877 2*11171^100961+1 408700 g427 2014
| |
| Divides Phi(11171^100961,2)
| |
| 1878 203*2^1357425+1 408628 L1201 2012
| |
| 1879 63*2^1357156-1 408547 L1828 2011
| |
| 1880 1455*2^1357070+1 408522 L1134 2012
| |
| 1881 63*2^1356980+1 408494 L181 2011
| |
| 1882 7176*29^279240+1 408364 g103 2011
| |
| 1883 4133*2^1356364-1 408310 L1959 2013
| |
| 1884 273*2^1356347-1 408304 L1828 2013
| |
| 1885 223*2^1356316+1 408295 L1158 2012
| |
| 1886 723*2^1355919-1 408176 L1809 2014
| |
| 1887 4233*22^304046+1 408162 L1471 2013
| |
| 1888 205*2^1355814+1 408143 L2413 2012
| |
| 1889 347*2^1355595+1 408078 L2913 2012
| |
| 1890 357*2^1355535+1 408060 L2873 2012 (**)
| |
| 1891 212909*46^245362-1 407983 p255 2014
| |
| 1892 299*2^1355004-1 407900 L426 2009
| |
| 1893 771*2^1354880+1 407863 L2919 2012
| |
| 1894 338707*2^1354830+1 407850 L124 2005 Cullen
| |
| 1895 199*2^1354385-1 407713 L2074 2012
| |
| 1896 1343*2^1354316-1 407693 L1828 2013
| |
| 1897 195*2^1354264+1 407677 L2413 2012
| |
| 1898 8331405*2^1353931-1 407581 L260 2010
| |
| 1899 703*2^1353866+1 407558 L2659 2012
| |
| 1900 99*2^1353457+1 407434 L1675 2011 (**)
| |
| 1901 4151*2^1353222-1 407365 L1959 2013
| |
| 1902 763*2^1352872+1 407258 L2121 2012
| |
| 1903 30*939^137000+1 407257 L1471 2013
| |
| 1904 1155*2^1352821+1 407243 L2921 2012
| |
| 1905 367*2^1352793-1 407234 L1830 2013
| |
| 1906 1345*2^1352629-1 407186 L1828 2013
| |
| 1907 1085*2^1352556-1 407163 L1828 2013
| |
| 1908 651*2^1352397-1 407115 L1817 2014
| |
| 1909 273*2^1352006-1 406997 L1828 2013
| |
| 1910 631*2^1351932+1 406975 L1115 2012
| |
| 1911 915*2^1351847-1 406950 L1809 2014
| |
| 1912 999*2^1351487-1 406842 L1809 2014
| |
| 1913 709*2^1351346+1 406799 L2604 2012
| |
| 1914 539*2^1350581+1 406569 L2951 2012 (**)
| |
| 1915 837*2^1350463+1 406533 L1745 2012
| |
| 1916 1157*2^1350311+1 406488 L2923 2012
| |
| 1917 441*2^1350261-1 406472 L1978 2014
| |
| 1918 1005*2^1349820+1 406340 L2920 2012
| |
| 1919 195*2^1349818+1 406338 L1204 2012
| |
| 1920 4065*2^1349206-1 406156 L1959 2013
| |
| 1921 269*2^1348497+1 405941 L2916 2012
| |
| 1922 951*2^1348210-1 405855 L1809 2014
| |
| 1923 1075*2^1348100+1 405822 L2453 2012 (**)
| |
| 1924 975*2^1347675+1 405694 L2952 2012
| |
| 1925 1540550^65536+1 405516 GF2 2003 Generalized Fermat
| |
| 1926 1191*2^1346923-1 405468 L1828 2013
| |
| 1927 1087*2^1346917-1 405466 L121 2010
| |
| 1928 765*2^1346535+1 405351 L2413 2012
| |
| 1929 361*2^1346489-1 405337 L1819 2013
| |
| 1930 4065*2^1346405-1 405312 L1959 2013
| |
| 1931 1063959*2^1346269-1 405274 L466 2013
| |
| 1932 721*2^1346084+1 405215 L1387 2012
| |
| 1933 931*2^1344712+1 404802 L1115 2012
| |
| 1934 15*2^1344313-1 404680 L139 2007
| |
| 1935 1169*2^1344265+1 404668 L2922 2012
| |
| 1936 319*2^1344059-1 404605 L1819 2013
| |
| 1937 553*2^1344056+1 404604 L2943 2012
| |
| 1938 693*2^1343535-1 404448 L1817 2014
| |
| 1939 1483076^65536+1 404434 GF2 2003 Generalized Fermat
| |
| 1940 11*2^1343347+1 404389 p169 2005
| |
| Divides GF(1343346,6)
| |
| 1941 1321*2^1343213-1 404351 L1828 2013
| |
| 1942 1478036^65536+1 404337 GF2 2002 Generalized Fermat
| |
| 1943 1315*2^1342783-1 404222 L1828 2013
| |
| 1944 607*2^1342336+1 404087 L2675 2012 (**)
| |
| 1945 941*2^1341569+1 403856 L1204 2012
| |
| 1946 909*2^1341455-1 403822 L1817 2014
| |
| 1947 777*2^1340901-1 403655 L1817 2014
| |
| 1948 1079*2^1340511+1 403538 L1336 2012
| |
| 1949 875*2^1340454-1 403520 L1809 2014
| |
| 1950 1197*2^1340338+1 403486 L2525 2012
| |
| 1951 487*2^1340126+1 403421 L1158 2012
| |
| 1952 115*2^1338620+1 402967 L1751 2011
| |
| 1953 921*2^1338408+1 402904 L1204 2012
| |
| 1954 1261*2^1338371-1 402893 L1828 2012
| |
| 1955 801*2^1338298-1 402871 L2257 2014
| |
| 1956 1099*2^1338041-1 402794 L1828 2012
| |
| 1957 89*2^1338001+1 402781 L1223 2011
| |
| 1958 2685*2^1337858-1 402739 L1959 2014
| |
| 1959 835*2^1337808+1 402724 L1158 2012
| |
| 1960 2265*2^1337778-1 402715 L1959 2014
| |
| 1961 1309*2^1337417-1 402606 L1828 2012
| |
| 1962 54767*2^1337287+1 402569 SB5 2002
| |
| 1963 403*2^1337280+1 402564 L1741 2012
| |
| 1964 407*2^1337203+1 402541 L1972 2012
| |
| 1965 107*2^1337019+1 402485 L2659 2012
| |
| Divides GF(1337018,10)
| |
| 1966 1295*2^1337012-1 402484 L1828 2012
| |
| 1967 143*2^1336358-1 402286 L1828 2012
| |
| 1968 933*2^1336282+1 402264 L2918 2012
| |
| 1969 1374038^65536+1 402260 GF3 2003 Generalized Fermat
| |
| 1970 863*2^1336093+1 402208 L1480 2012
| |
| 1971 203*2^1335989+1 402176 L1204 2012
| |
| 1972 345*2^1335896+1 402148 L1158 2012
| |
| 1973 81*2^1335675-1 402081 L268 2008
| |
| 1974 919*2^1335567-1 402049 L1817 2014
| |
| 1975 739*2^1335442+1 402011 L2085 2012
| |
| 1976 1361846^65536+1 402007 GF3 2002 Generalized Fermat
| |
| 1977 335*2^1335337+1 401980 L1776 2012
| |
| 1978 619*2^1335307-1 401971 L1817 2014
| |
| 1979 83110*151^184411+1 401833 p365 2013
| |
| 1980 1065*2^1334660-1 401776 L1828 2012
| |
| 1981 177*2^1334422-1 401704 L2101 2012
| |
| 1982 587*2^1333710-1 401490 L1978 2014
| |
| 1983 87*2^1332741-1 401197 L1828 2011
| |
| 1984 1293*2^1332159-1 401023 L1828 2012
| |
| 1985 231*2^1332103-1 401006 L1862 2013
| |
| 1986 725*2^1331970-1 400966 L1817 2014
| |
| 1987 8331405*2^1331801-1 400919 L260 2010
| |
| 1988 261*2^1331356+1 400781 L2873 2012
| |
| 1989 9009*2^1330663+1 400574 L2125 2014
| |
| 1990 921*2^1330248+1 400448 L1204 2012
| |
| 1991 9217*2^1329898+1 400344 L3984 2014
| |
| 1992 18*683^141239+1 400333 p258 2013
| |
| 1993 1341*2^1328829-1 400021 L1828 2012
| |
| 1994 1266062^65536+1 399931 g295 2002 Generalized Fermat
| |
| 1995 445*2^1328250+1 399846 L1533 2012
| |
| 1996 791*2^1327974-1 399763 L2257 2014
| |
| 1997 1293*2^1327556-1 399638 L1828 2012
| |
| 1998 169*2^1327114+1 399504 L2659 2012 Generalized Fermat
| |
| 1999 999*2^1326500-1 399320 L1809 2014
| |
| 2000 9701*2^1326397+1 399290 L2826 2014
| |
| 2001 9941*2^1325721+1 399086 L1115 2014
| |
| 2002 957*2^1325706+1 399081 L1741 2012
| |
| 2003 1275*2^1325641-1 399061 L1828 2012
| |
| 2004 9843*2^1325436+1 399000 L2125 2014
| |
| 2005 341*2^1325277+1 398951 L2879 2012
| |
| 2006 19*2^1325245-1 398940 L121 2010
| |
| 2007 9621*2^1325084+1 398895 L2125 2014
| |
| 2008 9639*2^1324483+1 398714 L2038 2014
| |
| 2009 9025*2^1324388+1 398685 L3824 2014 Generalized Fermat
| |
| 2010 827*2^1324334-1 398668 L1809 2014
| |
| 2011 863*2^1324270-1 398648 L1817 2014
| |
| 2012 1089*2^1323857-1 398524 L1828 2012
| |
| 2013 765*2^1323402-1 398387 L2257 2014
| |
| 2014 627*2^1323336-1 398367 L2257 2014
| |
| 2015 113966*6^511831+1 398287 L1471 2012
| |
| 2016 311*2^1323071+1 398287 L1745 2012
| |
| 2017 897*2^1322843+1 398219 L2562 2012
| |
| 2018 9477*2^1322831+1 398216 L3981 2014
| |
| 2019 "15238445279350815802...(398164 other digits)...70851559196354845061"
| |
| 398204 p44 2013 (**)
| |
| 2020 1221*2^1322591-1 398143 L1828 2012
| |
| 2021 9891*2^1322176+1 398019 L3912 2014
| |
| 2022 1371*2^1322077-1 397988 L1828 2012
| |
| 2023 6975*2^1321778-1 397899 L1862 2014
| |
| 2024 427*2^1321706+1 397876 L2879 2012
| |
| 2025 1245*2^1321376-1 397777 L1828 2012
| |
| 2026 9191*2^1321373+1 397777 L2707 2014
| |
| 2027 471*2^1320865+1 397623 L1935 2012 (**)
| |
| 2028 9615*2^1320610+1 397548 L3889 2014
| |
| 2029 5*2^1320487+1 397507 g55 2002
| |
| Divides GF(1320486,12)
| |
| 2030 9669*2^1320277+1 397447 L3035 2014
| |
| 2031 2925*2^1319977-1 397357 L1959 2014
| |
| 2032 363*2^1319756+1 397289 L2873 2012
| |
| 2033 759*2^1319718+1 397278 L1209 2012
| |
| 2034 4025*2^1319326-1 397161 L1959 2013
| |
| 2035 9585*2^1319318+1 397159 L3980 2014
| |
| 2036 525806!7+1 397102 p3 2012 Multifactorial
| |
| 2037 375*2^1319127-1 397100 L1830 2013
| |
| 2038 94189*2^1318646+1 396957 L2777 2013
| |
| Generalized Cullen (**)
| |
| 2039 4121*2^1318570-1 396933 L1959 2013
| |
| 2040 411*2^1318421-1 396887 L3844 2014
| |
| 2041 723*2^1318416+1 396886 L1204 2012
| |
| 2042 9035*2^1318299+1 396852 L3037 2014
| |
| 2043 2565*2^1318176-1 396814 L1959 2014
| |
| 2044 513*2^1318074-1 396783 L3844 2014
| |
| 2045 687*2^1318064-1 396780 L1817 2014
| |
| 2046 9065*2^1317889+1 396729 L3464 2014
| |
| 2047 289*2^1317378+1 396573 L1132 2012 Generalized Fermat
| |
| 2048 1225*2^1317269-1 396541 L1828 2012
| |
| 2049 269*2^1317053+1 396475 L1519 2012
| |
| 2050 4037*2^1316934-1 396441 L1959 2013
| |
| 2051 250463*2^1316921+1 396439 L764 2010
| |
| 2052 451*2^1316832+1 396409 L1158 2012
| |
| 2053 69*2^1316758+1 396386 L1446 2011 (**)
| |
| 2054 4059*2^1316549-1 396325 L1959 2013
| |
| 2055 28*731^138318+1 396133 L1471 2012
| |
| 2056 431*2^1315773+1 396090 L1158 2012
| |
| 2057 1105*2^1314586+1 395733 L2139 2012
| |
| 2058 2775*2^1314555-1 395724 L1959 2014
| |
| 2059 9277*2^1314550+1 395723 L2549 2014
| |
| 2060 1087540^65536+1 395605 p320 2011 Generalized Fermat
| |
| 2061 987*2^1314127+1 395595 L2891 2012
| |
| 2062 15266*12^366385-1 395401 p325 2011
| |
| Generalized Woodall (**)
| |
| 2063 7605*2^1313276-1 395340 L2074 2013
| |
| 2064 9357*2^1313151+1 395302 L2549 2014
| |
| 2065 1110*366^154149-1 395162 L2054 2011
| |
| 2066 9215*2^1312317+1 395051 L2981 2014
| |
| 2067 9867*2^1312294+1 395044 L2549 2014
| |
| 2068 30994*5^565095-1 394989 p280 2011
| |
| 2069 357*2^1311930+1 394933 L2085 2012
| |
| 2070 1097*2^1311771+1 394886 L2912 2012
| |
| 2071 1057476^65536+1 394807 g197 2002 Generalized Fermat
| |
| 2072 9155*2^1311239+1 394727 L3750 2014
| |
| 2073 1015*2^1311187-1 394710 L1828 2012
| |
| 2074 639*2^1310707+1 394565 L2117 2012
| |
| 2075 1001184681*2^1310640+1 394551 p221 2009
| |
| 2076 250107985*2^1310642+1 394551 p221 2009
| |
| 2077 9835*2^1310554+1 394521 L3954 2014
| |
| 2078 165054615*2^1310205-1 394420 L2055 2013
| |
| 2079 395*2^1309751+1 394277 L2826 2012
| |
| 2080 4175*2^1309492-1 394200 L1959 2013
| |
| 2081 763*2^1309300+1 394142 L2413 2012
| |
| 2082 9859*2^1309194+1 394111 L1741 2014
| |
| 2083 1171*2^1309048+1 394066 L2705 2012
| |
| 2084 9257*2^1308839+1 394004 L3035 2014
| |
| 2085 1024390^65536+1 393902 g299 2003 Generalized Fermat
| |
| 2086 1157*2^1308162-1 393800 L1828 2012
| |
| 2087 55*2^1308148+1 393794 L1446 2011 (**)
| |
| 2088 9835*2^1307914+1 393726 L3976 2014
| |
| 2089 4059*2^1307909-1 393724 L1959 2013
| |
| 2090 841*2^1307465-1 393590 L1817 2014
| |
| 2091 399*2^1307450+1 393585 L2659 2012
| |
| 2092 165054615*2^1307270-1 393536 L2055 2013
| |
| 2093 9535*2^1307240+1 393523 L3149 2014
| |
| 2094 351*2^1306875+1 393412 L2562 2012
| |
| 2095 1329*2^1306295-1 393238 L1828 2012
| |
| 2096 135*2^1306036+1 393159 L1130 2012
| |
| 2097 1105*2^1305693-1 393056 L1828 2012
| |
| 2098 9101*2^1305587+1 393025 L1741 2014
| |
| 2099 1485*2^1305359-1 392956 L1134 2012
| |
| 2100 9089*2^1305189+1 392905 L3889 2014
| |
| 2101 154801*2^1305084+1 392875 L764 2010
| |
| 2102 9747*2^1304898+1 392818 L3974 2014
| |
| 2103 945*2^1304747+1 392771 L1204 2012
| |
| 2104 83*500^145465+1 392608 p355 2012
| |
| 2105 24217*2^1304085-1 392574 L2055 2012
| |
| 2106 19581121*2^1303821-1 392497 p49 2009
| |
| 2107 897*2^1303608+1 392429 L1158 2012
| |
| 2108 379*2^1302991-1 392242 L1819 2013
| |
| 2109 609*2^1302898+1 392215 L1933 2012
| |
| 2110 1695*2^1302827+1 392194 L527 2013
| |
| 2111 117*2^1302764-1 392174 L1959 2011
| |
| 2112 9087*2^1302232+1 392015 L3973 2014
| |
| 2113 9003*2^1302208+1 392008 L2549 2014
| |
| 2114 2925*2^1302041-1 391957 L1862 2013
| |
| 2115 1185*2^1301930+1 391924 L1745 2012
| |
| 2116 849*2^1301920-1 391920 L2257 2014
| |
| 2117 429*2^1301821+1 391890 L2914 2012 (**)
| |
| 2118 357*2^1301704-1 391855 L1819 2013
| |
| 2119 9597*2^1301687+1 391851 L2826 2014
| |
| 2120 9197*2^1301263+1 391724 L3464 2014
| |
| 2121 81112*151^179764+1 391707 p365 2013
| |
| 2122 9037*2^1301022+1 391651 L3970 2014
| |
| 2123 9425*2^1300695+1 391553 L3972 2014
| |
| 2124 4037*2^1300604-1 391525 L1959 2013
| |
| 2125 219259*2^1300450+1 391480 L635 2010
| |
| 2126 205*2^1300401-1 391463 L384 2010
| |
| 2127 587*2^1300051+1 391358 L2085 2012
| |
| 2128 8909*2^1299997+1 391343 L3972 2014
| |
| 2129 93*2^1299926+1 391319 L1446 2011
| |
| 2130 5665*2^1299918+1 391319 L3877 2014
| |
| 2131 627*2^1299702+1 391253 L1415 2011
| |
| 2132 7851*2^1299663+1 391242 L1741 2014
| |
| 2133 8829*2^1299595+1 391222 L2659 2014
| |
| 2134 6675*2^1299554+1 391209 L2038 2014
| |
| 2135 1011*2^1299555+1 391209 L2805 2011
| |
| 2136 4225*2^1299536+1 391203 L3968 2014 Generalized Fermat
| |
| 2137 151026*5^559670-1 391198 p307 2010
| |
| 2138 9089*2^1299503+1 391194 L3969 2014
| |
| 2139 607*2^1299277-1 391125 L1817 2014
| |
| 2140 8747*2^1299219+1 391108 L2517 2014
| |
| 2141 4855*2^1299102+1 391073 L2322 2014
| |
| 2142 7329*2^1298886+1 391008 L2549 2014
| |
| 2143 567*2^1298854-1 390997 L1817 2013
| |
| 2144 9465*2^1298746+1 390966 L3965 2014
| |
| 2145 8293*2^1298662+1 390941 L3037 2014
| |
| 2146 3121*2^1298644+1 390935 L1408 2014
| |
| 2147 615*2^1298251+1 390816 L2826 2011
| |
| 2148 25*2^1298186+1 390795 g279 2005 Generalized Fermat
| |
| 2149 1543*2^1297952+1 390726 L3575 2014
| |
| 2150 5991*2^1297916+1 390716 L3271 2014
| |
| 2151 8331405*2^1297878-1 390708 L260 2010
| |
| 2152 6387*2^1297872+1 390703 L1129 2014
| |
| 2153 8755*2^1297752+1 390667 L1204 2014
| |
| 2154 3149*2^1297441+1 390573 L3957 2014
| |
| 2155 393*2^1297402-1 390560 L644 2011
| |
| 2156 1719*2^1297390+1 390557 L1792 2014
| |
| 2157 9309*2^1297370+1 390552 L2322 2014
| |
| 2158 2937*2^1297266+1 390520 L1741 2014
| |
| 2159 6953*2^1297169+1 390491 L3924 2014
| |
| 2160 4251*2^1296877+1 390403 L2117 2014
| |
| 2161 8427*2^1296523+1 390297 L2117 2014
| |
| 2162 6231*2^1296449+1 390274 L3953 2014
| |
| 2163 4085*2^1296362-1 390248 L1959 2013
| |
| 2164 9039*2^1296293+1 390228 L3575 2014
| |
| 2165 2001*2^1296278-1 390222 L3345 2014
| |
| 2166 8621*2^1296157+1 390187 L1741 2014
| |
| 2167 5107*2^1296156+1 390186 L3035 2014 (**)
| |
| 2168 3277*2^1296136+1 390180 L2038 2014
| |
| 2169 6489*2^1296099+1 390169 L3727 2014
| |
| 2170 3938*5^558032-1 390052 p304 2010
| |
| 2171 5855*2^1295459+1 389976 L3317 2014
| |
| 2172 1215*2^1295400-1 389958 L1828 2012
| |
| 2173 8379*2^1295315+1 389933 L3924 2014
| |
| 2174 6855*2^1295262+1 389917 L2549 2014
| |
| 2175 4089*2^1295163+1 389887 L3514 2014
| |
| 2176 9151*2^1295144+1 389882 L3035 2014
| |
| 2177 507*2^1295094-1 389865 L1817 2013
| |
| 2178 149*2^1295061+1 389855 L1751 2011
| |
| 2179 4599*2^1295006+1 389840 L3297 2014
| |
| 2180 4985*2^1295001+1 389838 L3781 2014
| |
| 2181 7839*2^1294999+1 389838 L1741 2014
| |
| 2182 3627*2^1294954+1 389824 L1823 2014
| |
| 2183 877*2^1294833-1 389787 L1817 2014
| |
| 2184 8961*2^1294615+1 389722 L1792 2014
| |
| 2185 8605*2^1294532+1 389697 L3035 2014
| |
| 2186 8947*2^1294516+1 389693 L3781 2014
| |
| 2187 1011*2^1294485+1 389682 L2659 2011
| |
| 2188 2549*2^1294471+1 389679 L2487 2014
| |
| 2189 18*189^171175+1 389675 p289 2012
| |
| 2190 731*2^1294414-1 389661 L1817 2014
| |
| 2191 5229*2^1294390+1 389654 L2038 2014
| |
| 2192 5639*2^1294383+1 389652 L2125 2014
| |
| 2193 6433*2^1294154+1 389583 L3952 2014
| |
| 2194 1895*2^1294093+1 389565 L2549 2014
| |
| 2195 3703*2^1294030+1 389546 L3317 2014 (**)
| |
| 2196 6537*2^1293982+1 389532 L3951 2014
| |
| 2197 3299*2^1293979+1 389531 L3924 2014
| |
| 2198 3471*2^1293890-1 389504 L1973 2013
| |
| 2199 125132*6^500528-1 389492 L2777 2012
| |
| Generalized Woodall (**)
| |
| 2200 6933*2^1293849+1 389492 L3813 2014
| |
| 2201 3735*2^1293813+1 389481 L3294 2014
| |
| 2202 5421*2^1293797+1 389476 L3781 2014
| |
| 2203 4041*2^1293777+1 389470 L1379 2014
| |
| 2204 6921*2^1293756+1 389464 L3813 2014
| |
| 2205 4009*2^1293751-1 389462 L1959 2013
| |
| 2206 799*2^1293702+1 389447 L1793 2011
| |
| 2207 563*2^1293468-1 389376 L1817 2013
| |
| 2208 9375*2^1293381+1 389351 L2322 2014
| |
| 2209 1655*2^1293309+1 389329 L1823 2014
| |
| 2210 8353*2^1293256+1 389313 L3035 2014
| |
| 2211 6131*2^1293217+1 389301 L2549 2014
| |
| 2212 8079*2^1293070+1 389257 L2038 2014
| |
| 2213 1611*2^1293069+1 389256 L3924 2014
| |
| 2214 1077*2^1293068+1 389256 L2826 2011
| |
| 2215 399*2^1293056-1 389252 L644 2010
| |
| 2216 397*2^1293028+1 389243 L2127 2012
| |
| 2217 3295*2^1292940+1 389218 L3317 2014
| |
| 2218 9601*2^1292912+1 389210 L3960 2014
| |
| 2219 1029*2^1292517-1 389090 L1828 2012
| |
| 2220 6707*2^1292499+1 389085 L3945 2014
| |
| 2221 2273*2^1292481+1 389079 L2549 2014
| |
| 2222 8217*2^1292446+1 389069 L1792 2014
| |
| 2223 99*2^1292395-1 389052 L282 2008
| |
| 2224 8031*2^1292364+1 389045 L3956 2014
| |
| 2225 6277*2^1292320+1 389031 L3954 2014
| |
| 2226 3045*2^1292254+1 389011 L3035 2014
| |
| 2227 7973*2^1292245+1 389009 L3658 2014
| |
| 2228 8745*2^1292055+1 388952 L2826 2014
| |
| 2229 1327*2^1292042+1 388947 L1741 2014
| |
| 2230 3695*2^1291985+1 388930 L3035 2014
| |
| 2231 5619*2^1291818+1 388880 L3947 2014
| |
| 2232 5157*2^1291734+1 388855 L1502 2014
| |
| 2233 857678^65536+1 388847 GF0 2002 Generalized Fermat
| |
| 2234 6203*2^1291693+1 388843 L3813 2014
| |
| 2235 4995*2^1291664+1 388834 L3278 2014
| |
| 2236 4203*2^1291584+1 388810 L2826 2014
| |
| 2237 3747*2^1291527+1 388792 L3317 2014
| |
| 2238 9463*2^1291430+1 388764 L1204 2014
| |
| 2239 3375*2^1291400+1 388754 L3878 2014
| |
| 2240 7701*2^1291396+1 388753 L3034 2014
| |
| 2241 475*2^1291353-1 388739 L1817 2013
| |
| 2242 5281*2^1291292+1 388722 L3278 2014
| |
| 2243 7851*2^1291269+1 388715 L3483 2014
| |
| 2244 3405*2^1291254+1 388710 L3877 2014
| |
| 2245 141*2^1291195+1 388691 L2910 2012
| |
| 2246 6143*2^1291125+1 388672 L3950 2014
| |
| 2247 1989*2^1291102+1 388664 L3317 2014
| |
| 2248 4389*2^1291081+1 388658 L2125 2014
| |
| 2249 9421*2^1290884+1 388599 L1204 2014
| |
| 2250 1897*2^1290764+1 388562 L3945 2014
| |
| 2251 3445*2^1290692+1 388541 L3797 2014
| |
| 2252 8727*2^1290682+1 388538 L1823 2014
| |
| 2253 2125*2^1290570+1 388504 L3713 2014
| |
| 2254 5947*2^1290492+1 388481 L1741 2014
| |
| 2255 2375*2^1290455+1 388470 L2918 2014
| |
| 2256 8293*2^1290438+1 388465 L1408 2014
| |
| 2257 6395*2^1290425+1 388461 L2826 2014
| |
| 2258 3363*2^1290413+1 388457 L2038 2014
| |
| 2259 475*2^1290255-1 388409 L1817 2013
| |
| 2260 296642715*2^1290222+1 388404 L3494 2014
| |
| 2261 5151*2^1290203+1 388394 L2549 2014
| |
| 2262 843832^65536+1 388384 GF0 2001 Generalized Fermat
| |
| 2263 5739*2^1290106+1 388365 L1823 2014
| |
| 2264 1587674268045*2^1290000-1 388341 L3985 2014
| |
| 2265 1587469977597*2^1290000-1 388341 L3985 2014
| |
| 2266 1587287135595*2^1290000-1 388341 L3380 2014
| |
| 2267 1585533761667*2^1290000-1 388341 L3983 2014
| |
| 2268 1585321563135*2^1290000-1 388341 L994 2014
| |
| 2269 1584766165965*2^1290000-1 388341 L2420 2014
| |
| 2270 1583692200387*2^1290000-1 388341 L927 2014
| |
| 2271 1581253784997*2^1290000-1 388341 L3982 2014
| |
| 2272 1577856218295*2^1290000-1 388341 L3602 2014
| |
| 2273 1577176243725*2^1290000-1 388341 L2035 2014
| |
| 2274 1577058457515*2^1290000-1 388341 L3392 2014
| |
| 2275 1576465403037*2^1290000-1 388341 L2482 2014
| |
| 2276 1575244736985*2^1290000-1 388341 L927 2014
| |
| 2277 1568097508287*2^1290000-1 388341 L3979 2014
| |
| 2278 1567597976175*2^1290000-1 388341 L2511 2014
| |
| 2279 1567525961685*2^1290000-1 388341 L1617 2014
| |
| 2280 1567042170507*2^1290000-1 388341 L2035 2014
| |
| 2281 1566966882855*2^1290000-1 388341 L2035 2014
| |
| 2282 1565533778877*2^1290000-1 388341 L3978 2014
| |
| 2283 1564313219205*2^1290000-1 388341 L3977 2014
| |
| 2284 1563874436187*2^1290000-1 388341 L3492 2014
| |
| 2285 1562830611177*2^1290000-1 388341 L3392 2014
| |
| 2286 1561837109607*2^1290000-1 388341 L2035 2014
| |
| 2287 1560753020697*2^1290000-1 388341 L3892 2014
| |
| 2288 1559503935657*2^1290000-1 388341 L3498 2014
| |
| 2289 1559498290047*2^1290000-1 388341 L3399 2014
| |
| 2290 1558043056755*2^1290000-1 388341 L2035 2014
| |
| 2291 1557283937337*2^1290000-1 388341 L3971 2014
| |
| 2292 1556802123285*2^1290000-1 388341 L3392 2014
| |
| 2293 1556557978677*2^1290000-1 388341 L927 2014
| |
| 2294 1555446049755*2^1290000-1 388341 L2482 2014
| |
| 2295 1553417731827*2^1290000-1 388341 L3940 2014
| |
| 2296 1550729418357*2^1290000-1 388341 L927 2014
| |
| 2297 1550646422607*2^1290000-1 388341 L927 2014
| |
| 2298 1545742216557*2^1290000-1 388341 L2320 2014
| |
| 2299 1545567752157*2^1290000-1 388341 L3529 2014
| |
| 2300 1542556412817*2^1290000-1 388341 L2506 2014
| |
| 2301 1540388178117*2^1290000-1 388341 L2511 2014
| |
| 2302 1540020118947*2^1290000-1 388341 L3966 2014
| |
| 2303 1539923124087*2^1290000-1 388341 L3203 2014
| |
| 2304 1536790007937*2^1290000-1 388341 L3392 2014
| |
| 2305 1536423910455*2^1290000-1 388341 L2443 2014
| |
| 2306 1534157809947*2^1290000-1 388341 L3963 2014
| |
| 2307 1531088788827*2^1290000-1 388341 L3962 2014
| |
| 2308 1528540601175*2^1290000-1 388341 L3918 2014
| |
| 2309 1527349729677*2^1290000-1 388341 L3203 2014
| |
| 2310 1526542311675*2^1290000-1 388341 L2035 2014
| |
| 2311 1524769328007*2^1290000-1 388341 L1909 2014
| |
| 2312 1524124034925*2^1290000-1 388341 L2511 2014
| |
| 2313 1524049816215*2^1290000-1 388341 L2443 2014
| |
| 2314 1523322690417*2^1290000-1 388341 L3959 2014
| |
| 2315 1521970820697*2^1290000-1 388341 L3392 2014
| |
| 2316 1520901329535*2^1290000-1 388341 L395 2014
| |
| 2317 1520831269527*2^1290000-1 388341 L3203 2014
| |
| 2318 1520778103647*2^1290000-1 388341 L2511 2014
| |
| 2319 1519083697635*2^1290000-1 388341 L3392 2014
| |
| 2320 1518186147735*2^1290000-1 388341 L3819 2014
| |
| 2321 1518149186097*2^1290000-1 388341 L3811 2014
| |
| 2322 1517602360305*2^1290000-1 388341 L3958 2014
| |
| 2323 1515002300457*2^1290000-1 388341 L3955 2014
| |
| 2324 1514505008175*2^1290000-1 388341 L3765 2014
| |
| 2325 1514127097215*2^1290000-1 388341 L3429 2014
| |
| 2326 1513688541435*2^1290000-1 388341 L3203 2014
| |
| 2327 1512054421185*2^1290000-1 388341 L3392 2014
| |
| 2328 1511400664317*2^1290000-1 388341 L2511 2014
| |
| 2329 1509977233767*2^1290000-1 388341 L3492 2014
| |
| 2330 1508513103375*2^1290000-1 388341 L2035 2014
| |
| 2331 1507827741387*2^1290000-1 388341 L3337 2014
| |
| 2332 1506075167385*2^1290000-1 388341 L2511 2014
| |
| 2333 1505785307955*2^1290000-1 388341 L3949 2014
| |
| 2334 1505224997685*2^1290000-1 388341 L3892 2014
| |
| 2335 1504235206155*2^1290000-1 388341 L3948 2014
| |
| 2336 1503547863447*2^1290000-1 388341 L3571 2014
| |
| 2337 1502472516237*2^1290000-1 388341 L3337 2014
| |
| 2338 1502252324685*2^1290000-1 388341 L2601 2014
| |
| 2339 1501168845297*2^1290000-1 388341 L3337 2014
| |
| 2340 1498096118697*2^1290000-1 388341 L2035 2014
| |
| 2341 1496911198755*2^1290000-1 388341 L3392 2014
| |
| 2342 1496594115177*2^1290000-1 388341 L3892 2014
| |
| 2343 1495976062317*2^1290000-1 388341 L3819 2014
| |
| 2344 1495868912685*2^1290000-1 388341 L3946 2014
| |
| 2345 1494027763035*2^1290000-1 388341 L3918 2014
| |
| 2346 1493945608797*2^1290000-1 388341 L3616 2014
| |
| 2347 1493318499585*2^1290000-1 388341 L3498 2014
| |
| 2348 1492828328775*2^1290000-1 388341 L3900 2014
| |
| 2349 1492380256425*2^1290000-1 388341 L3846 2014
| |
| 2350 1492034760645*2^1290000-1 388341 L3175 2014
| |
| 2351 1489266643527*2^1290000-1 388341 L3822 2014
| |
| 2352 1489088842587*2^1290000-1 388341 L2511 2014
| |
| 2353 1489044010155*2^1290000-1 388341 L3944 2014
| |
| 2354 1489026307095*2^1290000-1 388341 L3347 2014
| |
| 2355 1488356038827*2^1290000-1 388341 L3853 2014
| |
| 2356 1487532012477*2^1290000-1 388341 L3560 2014
| |
| 2357 1486501501047*2^1290000-1 388341 L2482 2014
| |
| 2358 1485738472605*2^1290000-1 388341 L2511 2014
| |
| 2359 1484890581387*2^1290000-1 388341 L2511 2014
| |
| 2360 1481168443335*2^1290000-1 388341 L2420 2014
| |
| 2361 1481134676175*2^1290000-1 388341 L3203 2014
| |
| 2362 1478775484767*2^1290000-1 388341 L3892 2014
| |
| 2363 1477392415737*2^1290000-1 388341 L3939 2014
| |
| 2364 1476485496015*2^1290000-1 388341 L2601 2014
| |
| 2365 1475652438615*2^1290000-1 388341 L2511 2014
| |
| 2366 1475495377947*2^1290000-1 388341 L3936 2014
| |
| 2367 1474142656005*2^1290000-1 388341 L2332 2014
| |
| 2368 1474050373215*2^1290000-1 388341 L3892 2014
| |
| 2369 1472987448777*2^1290000-1 388341 L3935 2014
| |
| 2370 1471291796445*2^1290000-1 388341 L3934 2014
| |
| 2371 1470617892555*2^1290000-1 388341 L3892 2014
| |
| 2372 1470352927125*2^1290000-1 388341 L1970 2014
| |
| 2373 1470021078045*2^1290000-1 388341 L2601 2014
| |
| 2374 1469338495485*2^1290000-1 388341 L3932 2014
| |
| 2375 1468915091145*2^1290000-1 388341 L3392 2014
| |
| 2376 1468315881987*2^1290000-1 388341 L1637 2014
| |
| 2377 1468120008087*2^1290000-1 388341 L3892 2014
| |
| 2378 1464974816067*2^1290000-1 388341 L3897 2014
| |
| 2379 1461761635365*2^1290000-1 388341 L3929 2014
| |
| 2380 1461190776705*2^1290000-1 388341 L3921 2014
| |
| 2381 1460244209235*2^1290000-1 388341 L3900 2014
| |
| 2382 1460143275705*2^1290000-1 388341 L3918 2014
| |
| 2383 1459885671237*2^1290000-1 388341 L3920 2014
| |
| 2384 1456090247355*2^1290000-1 388341 L3916 2014
| |
| 2385 1456081177815*2^1290000-1 388341 L3915 2014
| |
| 2386 1453822547025*2^1290000-1 388341 L2601 2014
| |
| 2387 1453600879887*2^1290000-1 388341 L3845 2014
| |
| 2388 1451991096675*2^1290000-1 388341 L3911 2014
| |
| 2389 1451513519337*2^1290000-1 388341 L3923 2014
| |
| 2390 1449952523847*2^1290000-1 388341 L3829 2014
| |
| 2391 1448426870415*2^1290000-1 388341 L3347 2014
| |
| 2392 1448203934247*2^1290000-1 388341 L3399 2014
| |
| 2393 1441771058835*2^1290000-1 388341 L596 2014
| |
| 2394 1440989852487*2^1290000-1 388341 L2511 2014
| |
| 2395 1440952105395*2^1290000-1 388341 L3892 2014
| |
| 2396 1439031887907*2^1290000-1 388341 L3906 2014
| |
| 2397 1437473499717*2^1290000-1 388341 L1219 2014
| |
| 2398 1436127775425*2^1290000-1 388341 L2511 2014
| |
| 2399 1434859874457*2^1290000-1 388341 L2420 2014
| |
| 2400 1433115528927*2^1290000-1 388341 L2511 2014
| |
| 2401 1431696046695*2^1290000-1 388341 L2482 2014
| |
| 2402 1431518804235*2^1290000-1 388341 L3900 2014
| |
| 2403 1428464678667*2^1290000-1 388341 L3899 2014
| |
| 2404 1427511339987*2^1290000-1 388341 L2511 2014
| |
| 2405 1426669774995*2^1290000-1 388341 L3897 2014
| |
| 2406 1426186906305*2^1290000-1 388341 L3896 2014
| |
| 2407 1426093209627*2^1290000-1 388341 L941 2014
| |
| 2408 1421893090275*2^1290000-1 388341 L3892 2014
| |
| 2409 1421878503867*2^1290000-1 388341 L3891 2014
| |
| 2410 1421725576425*2^1290000-1 388341 L3892 2014
| |
| 2411 1421499168735*2^1290000-1 388341 L3255 2014
| |
| 2412 1419928827777*2^1290000-1 388341 L1844 2014
| |
| 2413 1419319132467*2^1290000-1 388341 L941 2014
| |
| 2414 1417285385787*2^1290000-1 388341 L3521 2014
| |
| 2415 1416332753517*2^1290000-1 388341 L3521 2014
| |
| 2416 1415413134375*2^1290000-1 388341 L3521 2014
| |
| 2417 1411662710577*2^1290000-1 388341 L2420 2014
| |
| 2418 1409846532195*2^1290000-1 388341 L2035 2014
| |
| 2419 1409598816507*2^1290000-1 388341 L927 2014
| |
| 2420 1408988763957*2^1290000-1 388341 L3521 2014
| |
| 2421 1408809845655*2^1290000-1 388341 L3521 2014
| |
| 2422 1407077511777*2^1290000-1 388341 L2483 2014
| |
| 2423 1404965117967*2^1290000-1 388341 L3521 2014
| |
| 2424 1404832223487*2^1290000-1 388341 L3884 2014
| |
| 2425 1404721812237*2^1290000-1 388341 L3871 2014
| |
| 2426 1401136563447*2^1290000-1 388341 L3883 2014
| |
| 2427 1399057918755*2^1290000-1 388341 L3380 2014
| |
| 2428 1398864471387*2^1290000-1 388341 L2511 2014
| |
| 2429 1395777735165*2^1290000-1 388341 L2420 2014
| |
| 2430 1395662544285*2^1290000-1 388341 L3880 2014
| |
| 2431 1391710073385*2^1290000-1 388341 L927 2014
| |
| 2432 1389464772285*2^1290000-1 388341 L927 2014
| |
| 2433 1385351293947*2^1290000-1 388341 L2601 2014
| |
| 2434 1385245767435*2^1290000-1 388341 L927 2014
| |
| 2435 1383662943117*2^1290000-1 388341 L3331 2014
| |
| 2436 1383507120525*2^1290000-1 388341 L3492 2014
| |
| 2437 1383317261487*2^1290000-1 388341 L3560 2014
| |
| 2438 1382779047405*2^1290000-1 388341 L2035 2014
| |
| 2439 1380940810317*2^1290000-1 388341 L2035 2014
| |
| 2440 1379867389827*2^1290000-1 388341 L2194 2014
| |
| 2441 1378837619397*2^1290000-1 388341 L941 2014
| |
| 2442 1378729467747*2^1290000-1 388341 L3706 2014
| |
| 2443 1377455677887*2^1290000-1 388341 L1695 2014
| |
| 2444 1376616320427*2^1290000-1 388341 L3874 2014
| |
| 2445 1375598661885*2^1290000-1 388341 L2511 2014
| |
| 2446 1373946265065*2^1290000-1 388341 L3401 2014
| |
| 2447 1371818209947*2^1290000-1 388341 L3871 2014
| |
| 2448 1369860760845*2^1290000-1 388341 L3674 2014
| |
| 2449 1369618355625*2^1290000-1 388341 L1587 2014
| |
| 2450 1367922865515*2^1290000-1 388341 L3648 2014
| |
| 2451 1367192347365*2^1290000-1 388341 L596 2014
| |
| 2452 1366913629347*2^1290000-1 388341 L927 2014
| |
| 2453 1366349229177*2^1290000-1 388341 L927 2014
| |
| 2454 1365815806875*2^1290000-1 388341 L2035 2014
| |
| 2455 1365073633005*2^1290000-1 388341 L2511 2014
| |
| 2456 1363505507457*2^1290000-1 388341 L3842 2014
| |
| 2457 1360877788767*2^1290000-1 388341 L2035 2014
| |
| 2458 1360658041545*2^1290000-1 388341 L3858 2014
| |
| 2459 1358191901547*2^1290000-1 388341 L3401 2014
| |
| 2460 1355638689207*2^1290000-1 388341 L3632 2014
| |
| 2461 1354132252587*2^1290000-1 388341 L3651 2014
| |
| 2462 1353798101535*2^1290000-1 388341 L3866 2014
| |
| 2463 1352225947077*2^1290000-1 388341 L2482 2014
| |
| 2464 1351756886235*2^1290000-1 388341 L2231 2014
| |
| 2465 1351249131267*2^1290000-1 388341 L3203 2014
| |
| 2466 1348862771637*2^1290000-1 388341 L1617 2014
| |
| 2467 1348023164367*2^1290000-1 388341 L2420 2014
| |
| 2468 1347832444647*2^1290000-1 388341 L3852 2014
| |
| 2469 1347402800187*2^1290000-1 388341 L1219 2014
| |
| 2470 1345609563237*2^1290000-1 388341 L3401 2014
| |
| 2471 1345228454607*2^1290000-1 388341 L1591 2014
| |
| 2472 1344573993915*2^1290000-1 388341 L2511 2014
| |
| 2473 1344504836085*2^1290000-1 388341 L3203 2014
| |
| 2474 1343970389835*2^1290000-1 388341 L3842 2014
| |
| 2475 1341149175837*2^1290000-1 388341 L3853 2014
| |
| 2476 1339926748275*2^1290000-1 388341 L3846 2014
| |
| 2477 1338984890397*2^1290000-1 388341 L1591 2014
| |
| 2478 1338815196645*2^1290000-1 388341 L3509 2014
| |
| 2479 1337791586985*2^1290000-1 388341 L3602 2014
| |
| 2480 1335620049585*2^1290000-1 388341 L3847 2014
| |
| 2481 1334448977517*2^1290000-1 388341 L3845 2014
| |
| 2482 1333578889155*2^1290000-1 388341 L3842 2014
| |
| 2483 1332167545977*2^1290000-1 388341 L2775 2014
| |
| 2484 1332117930057*2^1290000-1 388341 L3842 2014
| |
| 2485 1330770635385*2^1290000-1 388341 L3841 2014
| |
| 2486 1329147720105*2^1290000-1 388341 L3203 2014
| |
| 2487 1328386927707*2^1290000-1 388341 L3380 2014
| |
| 2488 1327992831165*2^1290000-1 388341 L3840 2014
| |
| 2489 1327385659455*2^1290000-1 388341 L2204 2014
| |
| 2490 1327000086615*2^1290000-1 388341 L3203 2014
| |
| 2491 1326669382857*2^1290000-1 388341 L3347 2014
| |
| 2492 1325445664317*2^1290000-1 388341 L3203 2014
| |
| 2493 1323382008375*2^1290000-1 388341 L3651 2014
| |
| 2494 1322849362917*2^1290000-1 388341 L3203 2014
| |
| 2495 1321954316835*2^1290000-1 388341 L3819 2014
| |
| 2496 1321870671555*2^1290000-1 388341 L3602 2014
| |
| 2497 1321051328415*2^1290000-1 388341 L3829 2014
| |
| 2498 1319971728075*2^1290000-1 388341 L3819 2014
| |
| 2499 1319624021397*2^1290000-1 388341 L2420 2014
| |
| 2500 1319118191655*2^1290000-1 388341 L3203 2014
| |
| 2501 1318964157075*2^1290000-1 388341 L3203 2014
| |
| 2502 1318230789027*2^1290000-1 388341 L3837 2014
| |
| 2503 1315876192935*2^1290000-1 388341 L3651 2014
| |
| 2504 1313036021295*2^1290000-1 388341 L2436 2014
| |
| 2505 1312103117145*2^1290000-1 388341 L3832 2014
| |
| 2506 1308450095997*2^1290000-1 388341 L3831 2014
| |
| 2507 1306274034795*2^1290000-1 388341 L2483 2014
| |
| 2508 1303865892147*2^1290000-1 388341 L1704 2014
| |
| 2509 1302684995367*2^1290000-1 388341 L3429 2014
| |
| 2510 1302000622347*2^1290000-1 388341 L3746 2014
| |
| 2511 1301209790415*2^1290000-1 388341 L3829 2014
| |
| 2512 1300612852437*2^1290000-1 388341 L3203 2014
| |
| 2513 1300274732577*2^1290000-1 388341 L3546 2014
| |
| 2514 1300011605655*2^1290000-1 388341 L3828 2014
| |
| 2515 1299908352927*2^1290000-1 388341 L2511 2014
| |
| 2516 1298786723517*2^1290000-1 388341 L3827 2014
| |
| 2517 1298329417245*2^1290000-1 388341 L3203 2014
| |
| 2518 1297147560975*2^1290000-1 388341 L3751 2014
| |
| 2519 1296643077765*2^1290000-1 388341 L3826 2014
| |
| 2520 1295373347037*2^1290000-1 388341 L2332 2014
| |
| 2521 1294834358517*2^1290000-1 388341 L2483 2014
| |
| 2522 1290928967757*2^1290000-1 388341 L1726 2014
| |
| 2523 1289702588067*2^1290000-1 388341 L596 2014
| |
| 2524 1289302463127*2^1290000-1 388341 L3823 2014
| |
| 2525 1287279330867*2^1290000-1 388341 L3819 2014
| |
| 2526 1287113570307*2^1290000-1 388341 L3817 2014
| |
| 2527 1285928269227*2^1290000-1 388341 L3818 2014
| |
| 2528 1285508416575*2^1290000-1 388341 L3392 2014
| |
| 2529 1284054747855*2^1290000-1 388341 L2035 2014
| |
| 2530 1282593788817*2^1290000-1 388341 L3815 2014
| |
| 2531 1280455244367*2^1290000-1 388341 L3822 2014
| |
| 2532 1279847418447*2^1290000-1 388341 L3634 2014
| |
| 2533 1279182707955*2^1290000-1 388341 L1920 2014
| |
| 2534 1278172259367*2^1290000-1 388341 L3634 2014
| |
| 2535 1276841924787*2^1290000-1 388341 L3529 2014
| |
| 2536 1276209076497*2^1290000-1 388341 L3634 2014
| |
| 2537 1275321043815*2^1290000-1 388341 L3634 2014
| |
| 2538 1274562951315*2^1290000-1 388341 L3811 2014
| |
| 2539 1272951004125*2^1290000-1 388341 L2601 2014
| |
| 2540 1272008729325*2^1290000-1 388341 L3203 2014
| |
| 2541 1270893358275*2^1290000-1 388341 L3634 2014
| |
| 2542 1267183049475*2^1290000-1 388341 L3809 2014
| |
| 2543 1267113304917*2^1290000-1 388341 L1992 2014
| |
| 2544 1264613044977*2^1290000-1 388341 L1920 2014
| |
| 2545 1261161705555*2^1290000-1 388341 L3805 2014
| |
| 2546 1260329950665*2^1290000-1 388341 L3765 2014
| |
| 2547 1257984984417*2^1290000-1 388341 L2775 2014
| |
| 2548 1257427381395*2^1290000-1 388341 L3546 2014
| |
| 2549 1253806275477*2^1290000-1 388341 L3425 2014
| |
| 2550 1252879215705*2^1290000-1 388341 L3799 2014
| |
| 2551 1252530756207*2^1290000-1 388341 L3804 2014
| |
| 2552 1252200504837*2^1290000-1 388341 L3821 2014
| |
| 2553 1251973294497*2^1290000-1 388341 L3495 2014
| |
| 2554 1250477575587*2^1290000-1 388341 L3741 2014
| |
| 2555 1250254213437*2^1290000-1 388341 L3801 2014
| |
| 2556 1249155607425*2^1290000-1 388341 L3653 2014
| |
| 2557 1247560502235*2^1290000-1 388341 L2679 2014
| |
| 2558 1247252803617*2^1290000-1 388341 L2577 2014
| |
| 2559 1243685827965*2^1290000-1 388341 L324 2014
| |
| 2560 1242992170605*2^1290000-1 388341 L3792 2014
| |
| 2561 1240271690355*2^1290000-1 388341 L1921 2014
| |
| 2562 1238483555445*2^1290000-1 388341 L1992 2014
| |
| 2563 1234697178795*2^1290000-1 388341 L3716 2014
| |
| 2564 1231771061367*2^1290000-1 388341 L3788 2014
| |
| 2565 1230976538025*2^1290000-1 388341 L2512 2014
| |
| 2566 1228390630395*2^1290000-1 388341 L927 2014
| |
| 2567 1226955524727*2^1290000-1 388341 L2527 2014
| |
| 2568 1226041085967*2^1290000-1 388341 L3602 2014
| |
| 2569 1221770269905*2^1290000-1 388341 L3331 2014
| |
| 2570 1220468887995*2^1290000-1 388341 L3741 2014
| |
| 2571 1219614946905*2^1290000-1 388341 L3399 2014
| |
| 2572 1219444105245*2^1290000-1 388341 L3782 2014
| |
| 2573 1219095316437*2^1290000-1 388341 L3651 2014
| |
| 2574 1218589180245*2^1290000-1 388341 L3765 2014
| |
| 2575 1215345034545*2^1290000-1 388341 L3203 2014
| |
| 2576 1214578835307*2^1290000-1 388341 L3778 2014
| |
| 2577 1211682757827*2^1290000-1 388341 L3392 2014
| |
| 2578 1211396534955*2^1290000-1 388341 L3776 2014
| |
| 2579 1209387608907*2^1290000-1 388341 L2511 2014
| |
| 2580 1207909103445*2^1290000-1 388341 L3795 2014
| |
| 2581 1207310191677*2^1290000-1 388341 L3779 2014
| |
| 2582 1205769875775*2^1290000-1 388341 L2204 2014
| |
| 2583 1205405161515*2^1290000-1 388341 L3777 2014
| |
| 2584 1205045332515*2^1290000-1 388341 L3774 2014
| |
| 2585 1204508462547*2^1290000-1 388341 L3203 2014
| |
| 2586 1204222377405*2^1290000-1 388341 L3394 2014
| |
| 2587 1202862502935*2^1290000-1 388341 L1992 2014
| |
| 2588 1201479504615*2^1290000-1 388341 L3771 2014
| |
| 2589 1201123803927*2^1290000-1 388341 L3741 2014
| |
| 2590 1199891135835*2^1290000-1 388341 L3380 2014
| |
| 2591 1199154561297*2^1290000-1 388341 L2511 2014
| |
| 2592 1198376992095*2^1290000-1 388341 L2204 2014
| |
| 2593 1194137107347*2^1290000-1 388341 L3203 2014
| |
| 2594 1193342531157*2^1290000-1 388341 L3769 2014
| |
| 2595 1191694340655*2^1290000-1 388341 L3399 2014
| |
| 2596 1191403796355*2^1290000-1 388341 L3498 2014
| |
| 2597 1188581180295*2^1290000-1 388341 L3765 2014
| |
| 2598 1187886713667*2^1290000-1 388341 L3255 2014
| |
| 2599 1187340723915*2^1290000-1 388341 L3766 2014
| |
| 2600 1187213925135*2^1290000-1 388341 L2511 2014
| |
| 2601 1184707357557*2^1290000-1 388341 L3747 2014
| |
| 2602 1181830688397*2^1290000-1 388341 L3747 2014
| |
| 2603 1181240422227*2^1290000-1 388341 L3554 2014
| |
| 2604 1179369704817*2^1290000-1 388341 L3761 2014
| |
| 2605 1179138203787*2^1290000-1 388341 L2511 2014
| |
| 2606 1178829471867*2^1290000-1 388341 L3747 2014
| |
| 2607 1178343698397*2^1290000-1 388341 L2204 2014
| |
| 2608 1177700741217*2^1290000-1 388341 L3747 2014
| |
| 2609 1177162709415*2^1290000-1 388341 L2472 2014
| |
| 2610 1172406009045*2^1290000-1 388341 L957 2014
| |
| 2611 1168940989755*2^1290000-1 388341 L3741 2014
| |
| 2612 1168934752797*2^1290000-1 388341 L2679 2013
| |
| 2613 1168174212795*2^1290000-1 388341 L3747 2013
| |
| 2614 1167966409197*2^1290000-1 388341 L3747 2014
| |
| 2615 1164710569407*2^1290000-1 388341 L3590 2013
| |
| 2616 1161207962847*2^1290000-1 388341 L596 2014
| |
| 2617 1160119347285*2^1290000-1 388341 L3546 2013
| |
| 2618 1160013767895*2^1290000-1 388341 L3756 2013
| |
| 2619 1159641700815*2^1290000-1 388341 L2512 2014
| |
| 2620 1159170525795*2^1290000-1 388341 L3747 2013
| |
| 2621 1158896696235*2^1290000-1 388341 L3754 2013
| |
| 2622 1158628172907*2^1290000-1 388341 L1219 2013
| |
| 2623 1158596020965*2^1290000-1 388341 L3751 2013
| |
| 2624 1157625866397*2^1290000-1 388341 L3546 2013
| |
| 2625 1154012056437*2^1290000-1 388341 L375 2013
| |
| 2626 1153704503637*2^1290000-1 388341 L2511 2013
| |
| 2627 1152097577535*2^1290000-1 388341 L3746 2013
| |
| 2628 1151163876795*2^1290000-1 388341 L3634 2013
| |
| 2629 1147793253495*2^1290000-1 388341 L3627 2013
| |
| 2630 1147684911975*2^1290000-1 388341 L3741 2013
| |
| 2631 1147583305827*2^1290000-1 388341 L992 2014
| |
| 2632 1147042745907*2^1290000-1 388341 L2679 2013
| |
| 2633 1146194696397*2^1290000-1 388341 L2679 2013
| |
| 2634 1146149349075*2^1290000-1 388341 L3745 2013
| |
| 2635 1144325099487*2^1290000-1 388341 L3740 2013
| |
| 2636 1143933001785*2^1290000-1 388341 L3394 2013
| |
| 2637 1141100366157*2^1290000-1 388341 L3651 2013
| |
| 2638 1140774031707*2^1290000-1 388341 L1992 2013
| |
| 2639 1138334454075*2^1290000-1 388341 L3734 2013
| |
| 2640 1136399992737*2^1290000-1 388341 L2152 2013
| |
| 2641 1135946642187*2^1290000-1 388341 L2264 2013
| |
| 2642 1134914346267*2^1290000-1 388341 L3429 2013
| |
| 2643 1130826639915*2^1290000-1 388341 L2693 2013
| |
| 2644 1128710732277*2^1290000-1 388341 L3730 2013
| |
| 2645 1126976603727*2^1290000-1 388341 L3718 2013
| |
| 2646 1126664017437*2^1290000-1 388341 L3627 2013
| |
| 2647 1126409632467*2^1290000-1 388341 L955 2013
| |
| 2648 1126046180985*2^1290000-1 388341 L1126 2013
| |
| 2649 1125156360627*2^1290000-1 388341 L3741 2013
| |
| 2650 1124268113925*2^1290000-1 388341 L2511 2013
| |
| 2651 1123500185145*2^1290000-1 388341 L3498 2013
| |
| 2652 1122965314515*2^1290000-1 388341 L3729 2013
| |
| 2653 1122878083917*2^1290000-1 388341 L927 2013
| |
| 2654 1120950876675*2^1290000-1 388341 L3255 2013
| |
| 2655 1119992865087*2^1290000-1 388341 L3602 2013
| |
| 2656 1118912885937*2^1290000-1 388341 L2511 2013
| |
| 2657 1118285427087*2^1290000-1 388341 L3627 2013
| |
| 2658 1118092122045*2^1290000-1 388341 L3602 2013
| |
| 2659 1117413349635*2^1290000-1 388341 L3723 2013
| |
| 2660 1114412040885*2^1290000-1 388341 L3203 2013
| |
| 2661 1114195470327*2^1290000-1 388341 L3701 2013
| |
| 2662 1110498744105*2^1290000-1 388341 L3401 2013
| |
| 2663 1109961177255*2^1290000-1 388341 L3718 2013
| |
| 2664 1109362875525*2^1290000-1 388341 L3722 2013
| |
| 2665 1109072939565*2^1290000-1 388341 L3634 2013
| |
| 2666 1107570189687*2^1290000-1 388341 L1695 2013
| |
| 2667 1107365779047*2^1290000-1 388341 L3203 2013
| |
| 2668 1106798537997*2^1290000-1 388341 L3321 2013
| |
| 2669 1106484548097*2^1290000-1 388341 L927 2013
| |
| 2670 1106442719475*2^1290000-1 388341 L3701 2013
| |
| 2671 1105559302767*2^1290000-1 388341 L3203 2013
| |
| 2672 1104368190285*2^1290000-1 388341 L1992 2013
| |
| 2673 1103967075645*2^1290000-1 388341 L927 2013
| |
| 2674 1101969629787*2^1290000-1 388341 L1391 2013
| |
| 2675 1094273062815*2^1290000-1 388341 L3715 2013
| |
| 2676 1091894647917*2^1290000-1 388341 L1992 2013
| |
| 2677 1087307860917*2^1290000-1 388341 L927 2013
| |
| 2678 1086565951947*2^1290000-1 388341 L2511 2013
| |
| 2679 1086338423667*2^1290000-1 388341 L3203 2013
| |
| 2680 1084863892677*2^1290000-1 388341 L3488 2013
| |
| 2681 1083229872447*2^1290000-1 388341 L927 2013
| |
| 2682 1082479039185*2^1290000-1 388341 L3816 2014
| |
| 2683 1081985488215*2^1290000-1 388341 L3203 2013
| |
| 2684 1081543957035*2^1290000-1 388341 L3710 2013
| |
| 2685 1081059875535*2^1290000-1 388341 L2512 2013
| |
| 2686 1080955629525*2^1290000-1 388341 L3708 2013
| |
| 2687 1079272341987*2^1290000-1 388341 L3203 2013
| |
| 2688 1077210057345*2^1290000-1 388341 L1994 2013
| |
| 2689 1074205073835*2^1290000-1 388341 L2760 2013
| |
| 2690 1073836801305*2^1290000-1 388341 L3703 2013
| |
| 2691 1073394950325*2^1290000-1 388341 L3203 2013
| |
| 2692 1072431944085*2^1290000-1 388341 L1617 2013
| |
| 2693 1070191827735*2^1290000-1 388341 L3704 2013
| |
| 2694 1069254072507*2^1290000-1 388341 L3706 2013
| |
| 2695 1067950803825*2^1290000-1 388341 L927 2013
| |
| 2696 1063778062707*2^1290000-1 388341 L3701 2013
| |
| 2697 1061613055785*2^1290000-1 388341 L986 2013
| |
| 2698 1060942890975*2^1290000-1 388341 L3401 2013
| |
| 2699 1060665898407*2^1290000-1 388341 L3380 2013
| |
| 2700 1059800750325*2^1290000-1 388341 L3316 2013
| |
| 2701 1059127077297*2^1290000-1 388341 L3697 2013
| |
| 2702 1056445957257*2^1290000-1 388341 L3697 2013
| |
| 2703 1055721308325*2^1290000-1 388341 L3270 2013
| |
| 2704 1054899866865*2^1290000-1 388341 L927 2013
| |
| 2705 1053802969485*2^1290000-1 388341 L986 2013
| |
| 2706 1053617800917*2^1290000-1 388341 L3694 2013
| |
| 2707 1050685023897*2^1290000-1 388341 L927 2013
| |
| 2708 1047660722997*2^1290000-1 388341 L3574 2013
| |
| 2709 1046786302707*2^1290000-1 388341 L3574 2013
| |
| 2710 1045698318045*2^1290000-1 388341 L2482 2013
| |
| 2711 1041951957975*2^1290000-1 388341 L3689 2013
| |
| 2712 1038901936635*2^1290000-1 388341 L3203 2013
| |
| 2713 1037485910937*2^1290000-1 388341 L3692 2013
| |
| 2714 1037337229197*2^1290000-1 388341 L3651 2013
| |
| 2715 1033980522237*2^1290000-1 388341 L3690 2013
| |
| 2716 1031789849127*2^1290000-1 388341 L2760 2013
| |
| 2717 1028108594385*2^1290000-1 388341 L3332 2013
| |
| 2718 1025973168267*2^1290000-1 388341 L3683 2013
| |
| 2719 1025297434707*2^1290000-1 388341 L2393 2013
| |
| 2720 1025262476355*2^1290000-1 388341 L927 2013
| |
| 2721 1024046665827*2^1290000-1 388341 L3680 2013
| |
| 2722 1022500112697*2^1290000-1 388341 L927 2013
| |
| 2723 1022094931275*2^1290000-1 388341 L3681 2013
| |
| 2724 1022077360785*2^1290000-1 388341 L3716 2013
| |
| 2725 1020695345337*2^1290000-1 388341 L2768 2013
| |
| 2726 1019771520357*2^1290000-1 388341 L3677 2013
| |
| 2727 1019649424647*2^1290000-1 388341 L3687 2013
| |
| 2728 1019428935327*2^1290000-1 388341 L3684 2013
| |
| 2729 1014340708377*2^1290000-1 388341 L3210 2013
| |
| 2730 1013852682705*2^1290000-1 388341 L927 2013
| |
| 2731 1013801112795*2^1290000-1 388341 L2165 2013
| |
| 2732 1013403119445*2^1290000-1 388341 L2340 2013
| |
| 2733 1013078775735*2^1290000-1 388341 L3638 2013
| |
| 2734 1009250298285*2^1290000-1 388341 L3651 2013
| |
| 2735 1006208359095*2^1290000-1 388341 L3651 2013
| |
| 2736 1006152210945*2^1290000-1 388341 L3674 2013
| |
| 2737 1005777719697*2^1290000-1 388341 L3517 2013
| |
| 2738 1005346134765*2^1290000-1 388341 L3203 2013
| |
| 2739 1004839330467*2^1290000-1 388341 L1695 2013
| |
| 2740 999621694437*2^1290000-1 388341 L2435 2013
| |
| 2741 998381855187*2^1290000-1 388341 L3530 2013
| |
| 2742 994866622857*2^1290000-1 388341 L3321 2013
| |
| 2743 993033944775*2^1290000-1 388341 L3669 2013
| |
| 2744 992804062035*2^1290000-1 388341 L3550 2013
| |
| 2745 991306658235*2^1290000-1 388341 L2774 2013
| |
| 2746 988443269355*2^1290000-1 388341 L3550 2013
| |
| 2747 987951536355*2^1290000-1 388341 L3550 2013
| |
| 2748 987947546187*2^1290000-1 388341 L3550 2013
| |
| 2749 986960139027*2^1290000-1 388341 L3550 2013
| |
| 2750 986646492837*2^1290000-1 388341 L3550 2013
| |
| 2751 985377618255*2^1290000-1 388341 L2165 2013
| |
| 2752 984971842125*2^1290000-1 388341 L3550 2013
| |
| 2753 984815265315*2^1290000-1 388341 L3550 2013
| |
| 2754 984502095915*2^1290000-1 388341 L3550 2013
| |
| 2755 984020087235*2^1290000-1 388341 L3667 2013
| |
| 2756 982862680875*2^1290000-1 388341 L2760 2013
| |
| 2757 981854461437*2^1290000-1 388341 L3661 2013
| |
| 2758 980419317267*2^1290000-1 388341 L2601 2013
| |
| 2759 979631785767*2^1290000-1 388341 L3203 2013
| |
| 2760 972354899637*2^1290000-1 388341 L3203 2013
| |
| 2761 971800484457*2^1290000-1 388341 L3550 2013
| |
| 2762 968312379687*2^1290000-1 388341 L3550 2013
| |
| 2763 966671575047*2^1290000-1 388341 L3550 2013
| |
| 2764 966517373307*2^1290000-1 388341 L3550 2013
| |
| 2765 964565245527*2^1290000-1 388341 L3655 2013
| |
| 2766 963720102345*2^1290000-1 388341 L3550 2013
| |
| 2767 960513995355*2^1290000-1 388341 L3530 2013
| |
| 2768 957710754135*2^1290000-1 388341 L3550 2013
| |
| 2769 957079417485*2^1290000-1 388341 L3550 2013
| |
| 2770 955894391307*2^1290000-1 388341 L3550 2013
| |
| 2771 954515883207*2^1290000-1 388341 L3550 2013
| |
| 2772 952957381677*2^1290000-1 388341 L3550 2013
| |
| 2773 951143741385*2^1290000-1 388341 L3550 2013
| |
| 2774 950702910927*2^1290000-1 388341 L3550 2013
| |
| 2775 950041665225*2^1290000-1 388341 L3550 2013
| |
| 2776 949825612395*2^1290000-1 388341 L2482 2013
| |
| 2777 948009634647*2^1290000-1 388341 L3203 2013
| |
| 2778 947544284685*2^1290000-1 388341 L3602 2013
| |
| 2779 947172395097*2^1290000-1 388341 L3550 2013
| |
| 2780 946728962067*2^1290000-1 388341 L3550 2013
| |
| 2781 945935699355*2^1290000-1 388341 L927 2013
| |
| 2782 944273417817*2^1290000-1 388341 L3550 2013
| |
| 2783 941940401307*2^1290000-1 388341 L3550 2013
| |
| 2784 941332557825*2^1290000-1 388341 L3550 2013
| |
| 2785 941193209817*2^1290000-1 388341 L3550 2013
| |
| 2786 940558054077*2^1290000-1 388341 L3550 2013
| |
| 2787 939782353167*2^1290000-1 388341 L3550 2013
| |
| 2788 935256026637*2^1290000-1 388341 L3550 2013
| |
| 2789 934848261657*2^1290000-1 388341 L3478 2013
| |
| 2790 933378344775*2^1290000-1 388341 L927 2013
| |
| 2791 933069639315*2^1290000-1 388341 L3550 2013
| |
| 2792 930685545387*2^1290000-1 388341 L3387 2013
| |
| 2793 929292816195*2^1290000-1 388341 L3652 2013
| |
| 2794 928112296947*2^1290000-1 388341 L3203 2013
| |
| 2795 927438140865*2^1290000-1 388341 L3550 2013
| |
| 2796 926915691117*2^1290000-1 388341 L3321 2013
| |
| 2797 923249438895*2^1290000-1 388341 L3550 2013
| |
| 2798 922287228075*2^1290000-1 388341 L1704 2013
| |
| 2799 920524257915*2^1290000-1 388341 L3550 2013
| |
| 2800 920470469457*2^1290000-1 388341 L3654 2013
| |
| 2801 920157814677*2^1290000-1 388341 L3550 2013
| |
| 2802 919969693965*2^1290000-1 388341 L3651 2013
| |
| 2803 919571680335*2^1290000-1 388341 L3550 2013
| |
| 2804 918750404775*2^1290000-1 388341 L3550 2013
| |
| 2805 918102769257*2^1290000-1 388341 L3550 2013
| |
| 2806 915076577607*2^1290000-1 388341 L2511 2013
| |
| 2807 914750194545*2^1290000-1 388341 L3521 2013
| |
| 2808 914170194117*2^1290000-1 388341 L3653 2013
| |
| 2809 912572197665*2^1290000-1 388341 L927 2013
| |
| 2810 912420115455*2^1290000-1 388341 L3521 2013
| |
| 2811 908954560587*2^1290000-1 388341 L1683 2013
| |
| 2812 908296607487*2^1290000-1 388341 L2287 2013
| |
| 2813 907717371825*2^1290000-1 388341 L927 2013
| |
| 2814 903461791617*2^1290000-1 388341 L927 2013
| |
| 2815 903420729027*2^1290000-1 388341 L3647 2013
| |
| 2816 899679370917*2^1290000-1 388341 L3648 2013
| |
| 2817 899202841647*2^1290000-1 388341 L3203 2013
| |
| 2818 898167691347*2^1290000-1 388341 L3643 2013
| |
| 2819 896401769895*2^1290000-1 388341 L3627 2013
| |
| 2820 894637861395*2^1290000-1 388341 L1617 2013
| |
| 2821 893189310477*2^1290000-1 388341 L3606 2013
| |
| 2822 888605121675*2^1290000-1 388341 L927 2013
| |
| 2823 888393312837*2^1290000-1 388341 L2457 2013
| |
| 2824 888301472835*2^1290000-1 388341 L3637 2013
| |
| 2825 887224672425*2^1290000-1 388341 L3642 2013
| |
| 2826 885721881807*2^1290000-1 388341 L3644 2013
| |
| 2827 885236623455*2^1290000-1 388341 L1844 2013
| |
| 2828 883666066155*2^1290000-1 388341 L3634 2013
| |
| 2829 883240798125*2^1290000-1 388341 L3636 2013
| |
| 2830 882585723087*2^1290000-1 388341 L3639 2013
| |
| 2831 881424702405*2^1290000-1 388341 L927 2013
| |
| 2832 880493050785*2^1290000-1 388341 L3635 2013
| |
| 2833 880482001467*2^1290000-1 388341 L2482 2013
| |
| 2834 878639678847*2^1290000-1 388341 L3615 2013
| |
| 2835 878374978005*2^1290000-1 388341 L3638 2013
| |
| 2836 878050315047*2^1290000-1 388341 L1866 2013
| |
| 2837 878000438817*2^1290000-1 388341 L3599 2013
| |
| 2838 876343168155*2^1290000-1 388341 L3203 2013
| |
| 2839 876300336177*2^1290000-1 388341 L3632 2013
| |
| 2840 876222091017*2^1290000-1 388341 L2601 2013
| |
| 2841 875738417277*2^1290000-1 388341 L3633 2013
| |
| 2842 875664474447*2^1290000-1 388341 L927 2013
| |
| 2843 874292185347*2^1290000-1 388341 L3628 2013
| |
| 2844 871849312617*2^1290000-1 388341 L3631 2013
| |
| 2845 870157826865*2^1290000-1 388341 L3390 2013
| |
| 2846 869864816007*2^1290000-1 388341 L2511 2013
| |
| 2847 869647892337*2^1290000-1 388341 L3627 2013
| |
| 2848 867437170857*2^1290000-1 388341 L3627 2013
| |
| 2849 864229553085*2^1290000-1 388341 L3623 2013
| |
| 2850 860584652517*2^1290000-1 388341 L3626 2013
| |
| 2851 859754363967*2^1290000-1 388341 L927 2013
| |
| 2852 859539105297*2^1290000-1 388341 L927 2013
| |
| 2853 858477576297*2^1290000-1 388341 L1866 2013
| |
| 2854 856533636675*2^1290000-1 388341 L3621 2013
| |
| 2855 855672648075*2^1290000-1 388341 L3618 2013
| |
| 2856 855320190345*2^1290000-1 388341 L1633 2013
| |
| 2857 854454107955*2^1290000-1 388341 L3615 2013
| |
| 2858 854014423605*2^1290000-1 388341 L986 2013
| |
| 2859 850825168695*2^1290000-1 388341 L3622 2013
| |
| 2860 850314091107*2^1290000-1 388341 L3613 2013
| |
| 2861 850039468245*2^1290000-1 388341 L3498 2013
| |
| 2862 848437471227*2^1290000-1 388341 L927 2013
| |
| 2863 846919408695*2^1290000-1 388341 L2360 2013
| |
| 2864 845860149645*2^1290000-1 388341 L2457 2013
| |
| 2865 845299920495*2^1290000-1 388341 L3392 2013
| |
| 2866 843928486905*2^1290000-1 388341 L2197 2013
| |
| 2867 843016476507*2^1290000-1 388341 L3371 2013
| |
| 2868 839085453477*2^1290000-1 388341 L3608 2013
| |
| 2869 836377098945*2^1290000-1 388341 L3606 2013
| |
| 2870 834341653785*2^1290000-1 388341 L2320 2013
| |
| 2871 833507909325*2^1290000-1 388341 L2511 2013
| |
| 2872 832280598765*2^1290000-1 388341 L1992 2013
| |
| 2873 831542710605*2^1290000-1 388341 L3203 2013
| |
| 2874 830276810295*2^1290000-1 388341 L3603 2013
| |
| 2875 829614956877*2^1290000-1 388341 L3611 2013
| |
| 2876 829375600497*2^1290000-1 388341 L3478 2013
| |
| 2877 829002832647*2^1290000-1 388341 L3605 2013
| |
| 2878 828492868635*2^1290000-1 388341 L3321 2013
| |
| 2879 827973164865*2^1290000-1 388341 L3478 2013
| |
| 2880 826705845105*2^1290000-1 388341 L3600 2013
| |
| 2881 823706004555*2^1290000-1 388341 L341 2013
| |
| 2882 823438630947*2^1290000-1 388341 L3498 2013
| |
| 2883 822973127427*2^1290000-1 388341 L3596 2013
| |
| 2884 822849486585*2^1290000-1 388341 L2405 2013
| |
| 2885 821593351845*2^1290000-1 388341 L3602 2013
| |
| 2886 820760612787*2^1290000-1 388341 L3599 2013
| |
| 2887 820723060677*2^1290000-1 388341 L2435 2013
| |
| 2888 820135820457*2^1290000-1 388341 L3346 2013
| |
| 2889 820102913775*2^1290000-1 388341 L3236 2013
| |
| 2890 819177521697*2^1290000-1 388341 L2472 2013
| |
| 2891 814817666817*2^1290000-1 388341 L3590 2013
| |
| 2892 813989439417*2^1290000-1 388341 L3550 2013
| |
| 2893 809413600047*2^1290000-1 388341 L3331 2013
| |
| 2894 809007544455*2^1290000-1 388341 L3550 2013
| |
| 2895 808744158105*2^1290000-1 388341 L3550 2013
| |
| 2896 806881982265*2^1290000-1 388341 L992 2013
| |
| 2897 804501663177*2^1290000-1 388341 L3550 2013
| |
| 2898 804083950257*2^1290000-1 388341 L3550 2013
| |
| 2899 801733068405*2^1290000-1 388341 L3550 2013
| |
| 2900 800717968827*2^1290000-1 388341 L2165 2013
| |
| 2901 799143902895*2^1290000-1 388341 L3591 2013
| |
| 2902 798493609665*2^1290000-1 388341 L3550 2013
| |
| 2903 797735864247*2^1290000-1 388341 L3550 2013
| |
| 2904 795154352505*2^1290000-1 388341 L3550 2013
| |
| 2905 794973711777*2^1290000-1 388341 L3550 2013
| |
| 2906 791655829167*2^1290000-1 388341 L3550 2013
| |
| 2907 790668022347*2^1290000-1 388341 L3550 2013
| |
| 2908 788897634525*2^1290000-1 388341 L3550 2013
| |
| 2909 786484820235*2^1290000-1 388341 L3550 2013
| |
| 2910 785807061627*2^1290000-1 388341 L3550 2013
| |
| 2911 784683127455*2^1290000-1 388341 L3550 2013
| |
| 2912 784173558327*2^1290000-1 388341 L3550 2013
| |
| 2913 781491518145*2^1290000-1 388341 L3550 2013
| |
| 2914 780988107765*2^1290000-1 388341 L3550 2013
| |
| 2915 780094698315*2^1290000-1 388341 L3550 2013
| |
| 2916 778889945715*2^1290000-1 388341 L3419 2013
| |
| 2917 778227467685*2^1290000-1 388341 L3550 2013
| |
| 2918 778202572035*2^1290000-1 388341 L3550 2013
| |
| 2919 777217454097*2^1290000-1 388341 L3550 2013
| |
| 2920 772880419995*2^1290000-1 388341 L3550 2013
| |
| 2921 772763684355*2^1290000-1 388341 L3550 2013
| |
| 2922 772172802735*2^1290000-1 388341 L3550 2013
| |
| 2923 770960461995*2^1290000-1 388341 L3550 2013
| |
| 2924 770527213395*2^1290000-1 388341 L3550 2013
| |
| 2925 769939190715*2^1290000-1 388341 L3550 2013
| |
| 2926 769842431967*2^1290000-1 388341 L3550 2013
| |
| 2927 769515689085*2^1290000-1 388341 L3550 2013
| |
| 2928 768825179685*2^1290000-1 388341 L3550 2013
| |
| 2929 768493578435*2^1290000-1 388341 L3550 2013
| |
| 2930 767979630735*2^1290000-1 388341 L3550 2013
| |
| 2931 767672240547*2^1290000-1 388341 L3550 2013
| |
| 2932 767444293257*2^1290000-1 388341 L3550 2013
| |
| 2933 767104512405*2^1290000-1 388341 L3550 2013
| |
| 2934 763549262187*2^1290000-1 388341 L3550 2013
| |
| 2935 761971146825*2^1290000-1 388341 L3582 2013
| |
| 2936 761182534455*2^1290000-1 388341 L3550 2013
| |
| 2937 760598148585*2^1290000-1 388341 L2423 2013
| |
| 2938 760250128137*2^1290000-1 388341 L3550 2013
| |
| 2939 757605926997*2^1290000-1 388341 L3550 2013
| |
| 2940 757145028447*2^1290000-1 388341 L3550 2013
| |
| 2941 756859648977*2^1290000-1 388341 L3550 2013
| |
| 2942 755730605115*2^1290000-1 388341 L3550 2013
| |
| 2943 755347333107*2^1290000-1 388341 L3550 2013
| |
| 2944 754113209127*2^1290000-1 388341 L3550 2013
| |
| 2945 753752769915*2^1290000-1 388341 L3550 2013
| |
| 2946 751305641595*2^1290000-1 388341 L3550 2013
| |
| 2947 750972083325*2^1290000-1 388341 L3550 2013
| |
| 2948 749019938637*2^1290000-1 388341 L3550 2013
| |
| 2949 747688413507*2^1290000-1 388341 L1563 2013
| |
| 2950 747579165837*2^1290000-1 388341 L3550 2013
| |
| 2951 747242198565*2^1290000-1 388341 L992 2013
| |
| 2952 744892886157*2^1290000-1 388341 L3550 2013
| |
| 2953 744867929577*2^1290000-1 388341 L3550 2013
| |
| 2954 743879220357*2^1290000-1 388341 L3560 2013
| |
| 2955 743155848477*2^1290000-1 388341 L3550 2013
| |
| 2956 742816460787*2^1290000-1 388341 L3550 2013
| |
| 2957 740405839815*2^1290000-1 388341 L3550 2013
| |
| 2958 740367863007*2^1290000-1 388341 L3550 2013
| |
| 2959 739402959927*2^1290000-1 388341 L3550 2013
| |
| 2960 739153581015*2^1290000-1 388341 L3550 2013
| |
| 2961 738783951435*2^1290000-1 388341 L3550 2013
| |
| 2962 738642222477*2^1290000-1 388341 L3578 2013
| |
| 2963 737104389465*2^1290000-1 388341 L3550 2013
| |
| 2964 736757583555*2^1290000-1 388341 L3550 2013
| |
| 2965 736664234577*2^1290000-1 388341 L3550 2013
| |
| 2966 734689728285*2^1290000-1 388341 L3550 2013
| |
| 2967 733633674867*2^1290000-1 388341 L3550 2013
| |
| 2968 731362328595*2^1290000-1 388341 L3550 2013
| |
| 2969 728372175645*2^1290000-1 388341 L3550 2013
| |
| 2970 727444781565*2^1290000-1 388341 L3550 2013
| |
| 2971 725175563385*2^1290000-1 388341 L2197 2013
| |
| 2972 724880607687*2^1290000-1 388341 L3550 2013
| |
| 2973 721744120797*2^1290000-1 388341 L3550 2013
| |
| 2974 721191764835*2^1290000-1 388341 L3550 2013
| |
| 2975 720576978537*2^1290000-1 388341 L3550 2013
| |
| 2976 718171996545*2^1290000-1 388341 L3550 2013
| |
| 2977 717870532227*2^1290000-1 388341 L975 2013
| |
| 2978 717097820985*2^1290000-1 388341 L3550 2013
| |
| 2979 716072968635*2^1290000-1 388341 L2679 2013
| |
| 2980 715969980645*2^1290000-1 388341 L3550 2013
| |
| 2981 715814868855*2^1290000-1 388341 L3550 2013
| |
| 2982 712235534535*2^1290000-1 388341 L3550 2013
| |
| 2983 711068481357*2^1290000-1 388341 L3550 2013
| |
| 2984 710303309415*2^1290000-1 388341 L3550 2013
| |
| 2985 708551718957*2^1290000-1 388341 L3550 2013
| |
| 2986 708229975995*2^1290000-1 388341 L3550 2013
| |
| 2987 707898299127*2^1290000-1 388341 L3550 2013
| |
| 2988 705030433935*2^1290000-1 388341 L3550 2013
| |
| 2989 702242617065*2^1290000-1 388341 L3574 2013
| |
| 2990 701050199157*2^1290000-1 388341 L3573 2013
| |
| 2991 701039249685*2^1290000-1 388341 L3550 2013
| |
| 2992 699938225457*2^1290000-1 388341 L3550 2013
| |
| 2993 697876484805*2^1290000-1 388341 L3550 2013
| |
| 2994 697182317715*2^1290000-1 388341 L3550 2013
| |
| 2995 695999873697*2^1290000-1 388341 L3571 2013
| |
| 2996 695079143715*2^1290000-1 388341 L2197 2013
| |
| 2997 689434185345*2^1290000-1 388341 L1566 2013
| |
| 2998 687716271357*2^1290000-1 388341 L3507 2013
| |
| 2999 687188015475*2^1290000-1 388341 L3429 2013
| |
| 3000 686937123987*2^1290000-1 388341 L3563 2013
| |
| 3001 686768387895*2^1290000-1 388341 L3572 2013
| |
| 3002 685697549955*2^1290000-1 388341 L2601 2013
| |
| 3003 685064645907*2^1290000-1 388341 L2693 2013
| |
| 3004 684872462655*2^1290000-1 388341 L3568 2013
| |
| 3005 684364639185*2^1290000-1 388341 L3550 2013
| |
| 3006 684364441467*2^1290000-1 388341 L3550 2013
| |
| 3007 684231201267*2^1290000-1 388341 L3550 2013
| |
| 3008 684168518577*2^1290000-1 388341 L3550 2013
| |
| 3009 684083929545*2^1290000-1 388341 L3550 2013
| |
| 3010 683596821747*2^1290000-1 388341 L3550 2013
| |
| 3011 682481695047*2^1290000-1 388341 L3550 2013
| |
| 3012 680633369295*2^1290000-1 388341 L3550 2013
| |
| 3013 680285208447*2^1290000-1 388341 L3550 2013
| |
| 3014 679946820315*2^1290000-1 388341 L3550 2013
| |
| 3015 679650559887*2^1290000-1 388341 L3550 2013
| |
| 3016 678718462977*2^1290000-1 388341 L3550 2013
| |
| 3017 677434157547*2^1290000-1 388341 L3550 2013
| |
| 3018 674896414575*2^1290000-1 388341 L3550 2013
| |
| 3019 674002958127*2^1290000-1 388341 L3550 2013
| |
| 3020 673205688837*2^1290000-1 388341 L3550 2013
| |
| 3021 672766437735*2^1290000-1 388341 L3331 2013
| |
| 3022 672313481805*2^1290000-1 388341 L3557 2013
| |
| 3023 670260024945*2^1290000-1 388341 L3550 2013
| |
| 3024 669404918385*2^1290000-1 388341 L3560 2013
| |
| 3025 665713293885*2^1290000-1 388341 L3550 2013
| |
| 3026 665186324085*2^1290000-1 388341 L3554 2013
| |
| 3027 661560458517*2^1290000-1 388341 L3321 2013
| |
| 3028 660633631875*2^1290000-1 388341 L3550 2013
| |
| 3029 659585676015*2^1290000-1 388341 L2450 2013
| |
| 3030 657516716925*2^1290000-1 388341 L3546 2013
| |
| 3031 657488545107*2^1290000-1 388341 L3556 2013
| |
| 3032 655030890087*2^1290000-1 388341 L2354 2013
| |
| 3033 654470821485*2^1290000-1 388341 L3542 2013
| |
| 3034 653826115005*2^1290000-1 388341 L3203 2013
| |
| 3035 652631778027*2^1290000-1 388341 L3541 2013
| |
| 3036 650715578835*2^1290000-1 388341 L927 2013
| |
| 3037 650395850925*2^1290000-1 388341 L3535 2013
| |
| 3038 649723807287*2^1290000-1 388341 L3537 2013
| |
| 3039 645403665447*2^1290000-1 388341 L927 2013
| |
| 3040 645183989655*2^1290000-1 388341 L927 2013
| |
| 3041 644332254837*2^1290000-1 388341 L2511 2013
| |
| 3042 643982821797*2^1290000-1 388341 L3535 2013
| |
| 3043 642136678995*2^1290000-1 388341 L1920 2013
| |
| 3044 640262956095*2^1290000-1 388341 L927 2013
| |
| 3045 640032469305*2^1290000-1 388341 L3371 2013
| |
| 3046 639442195857*2^1290000-1 388341 L3536 2013
| |
| 3047 639322276155*2^1290000-1 388341 L2511 2013
| |
| 3048 638280657105*2^1290000-1 388341 L1697 2013
| |
| 3049 637622451735*2^1290000-1 388341 L927 2013
| |
| 3050 637078553835*2^1290000-1 388341 L1430 2013
| |
| 3051 635051817825*2^1290000-1 388341 L3529 2013
| |
| 3052 634913128047*2^1290000-1 388341 L3520 2013
| |
| 3053 634907213127*2^1290000-1 388341 L3530 2013
| |
| 3054 631738082055*2^1290000-1 388341 L3525 2013
| |
| 3055 631368139017*2^1290000-1 388341 L2197 2013
| |
| 3056 629621073837*2^1290000-1 388341 L1319 2013
| |
| 3057 628140225225*2^1290000-1 388341 L1001 2013
| |
| 3058 622777788717*2^1290000-1 388341 L927 2013
| |
| 3059 622764665967*2^1290000-1 388341 L2601 2013
| |
| 3060 622171046565*2^1290000-1 388341 L3498 2013
| |
| 3061 621652716597*2^1290000-1 388341 L3522 2013
| |
| 3062 620799233145*2^1290000-1 388341 L3203 2013
| |
| 3063 620779654995*2^1290000-1 388341 L1953 2013
| |
| 3064 620441333295*2^1290000-1 388341 L2133 2013
| |
| 3065 619944319965*2^1290000-1 388341 L3534 2013
| |
| 3066 619106264367*2^1290000-1 388341 L927 2013
| |
| 3067 618824753445*2^1290000-1 388341 L1566 2013
| |
| 3068 617795053785*2^1290000-1 388341 L2478 2013
| |
| 3069 612917120097*2^1290000-1 388341 L3521 2013
| |
| 3070 612861781107*2^1290000-1 388341 L2595 2013
| |
| 3071 612563306175*2^1290000-1 388341 L2345 2013
| |
| 3072 611251352847*2^1290000-1 388341 L927 2013
| |
| 3073 608467591587*2^1290000-1 388341 L927 2013
| |
| 3074 605578149447*2^1290000-1 388341 L3558 2013
| |
| 3075 605500978227*2^1290000-1 388341 L3520 2013
| |
| 3076 605446960137*2^1290000-1 388341 L3242 2013
| |
| 3077 602667338535*2^1290000-1 388341 L3517 2013
| |
| 3078 599798757567*2^1290000-1 388341 L3515 2013
| |
| 3079 599415204327*2^1290000-1 388341 L1319 2013
| |
| 3080 598503731577*2^1290000-1 388341 L1319 2013
| |
| 3081 598076872617*2^1290000-1 388341 L2457 2013
| |
| 3082 595053598977*2^1290000-1 388341 L3426 2013
| |
| 3083 594635112225*2^1290000-1 388341 L2457 2013
| |
| 3084 594411078345*2^1290000-1 388341 L1319 2013
| |
| 3085 593727284685*2^1290000-1 388341 L2438 2013
| |
| 3086 591966620325*2^1290000-1 388341 L3503 2013
| |
| 3087 591088601337*2^1290000-1 388341 L3394 2013
| |
| 3088 590291881065*2^1290000-1 388341 L1319 2013
| |
| 3089 590278821135*2^1290000-1 388341 L1319 2013
| |
| 3090 586478944725*2^1290000-1 388341 L3347 2013
| |
| 3091 586267773705*2^1290000-1 388341 L1319 2013
| |
| 3092 585416789085*2^1290000-1 388341 L3509 2013
| |
| 3093 584315200737*2^1290000-1 388341 L596 2013
| |
| 3094 583990308807*2^1290000-1 388341 L3203 2013
| |
| 3095 583861939677*2^1290000-1 388341 L2511 2013
| |
| 3096 583634035647*2^1290000-1 388341 L2250 2013
| |
| 3097 582960045915*2^1290000-1 388341 L3429 2013
| |
| 3098 580814815467*2^1290000-1 388341 L3203 2013
| |
| 3099 580137887397*2^1290000-1 388341 L1319 2013
| |
| 3100 580058432985*2^1290000-1 388341 L3274 2013
| |
| 3101 578882614455*2^1290000-1 388341 L3506 2013
| |
| 3102 578680361367*2^1290000-1 388341 L1319 2013
| |
| 3103 577630659525*2^1290000-1 388341 L3274 2013
| |
| 3104 576462034977*2^1290000-1 388341 L1319 2013
| |
| 3105 574759579665*2^1290000-1 388341 L3203 2013
| |
| 3106 572912625477*2^1290000-1 388341 L3274 2013
| |
| 3107 572811590307*2^1290000-1 388341 L1617 2013
| |
| 3108 572005945905*2^1290000-1 388341 L2511 2013
| |
| 3109 571922904705*2^1290000-1 388341 L3287 2013
| |
| 3110 571510228245*2^1290000-1 388341 L2511 2013
| |
| 3111 571015401057*2^1290000-1 388341 L2496 2013
| |
| 3112 570494531505*2^1290000-1 388341 L596 2013
| |
| 3113 569989094517*2^1290000-1 388341 L3496 2013
| |
| 3114 569647051785*2^1290000-1 388341 L3496 2013
| |
| 3115 569544800037*2^1290000-1 388341 L3496 2013
| |
| 3116 569433388617*2^1290000-1 388341 L3287 2013
| |
| 3117 568371452337*2^1290000-1 388341 L3419 2013
| |
| 3118 567325505337*2^1290000-1 388341 L3401 2013
| |
| 3119 567065977905*2^1290000-1 388341 L3508 2013
| |
| 3120 566645493027*2^1290000-1 388341 L350 2013
| |
| 3121 563283929985*2^1290000-1 388341 L3507 2013
| |
| 3122 562952221197*2^1290000-1 388341 L3503 2013
| |
| 3123 562423570665*2^1290000-1 388341 L1319 2013
| |
| 3124 562271489685*2^1290000-1 388341 L3347 2013
| |
| 3125 558276767097*2^1290000-1 388341 L3503 2013
| |
| 3126 557527008717*2^1290000-1 388341 L1319 2013
| |
| 3127 556815267057*2^1290000-1 388341 L3401 2013
| |
| 3128 555989462955*2^1290000-1 388341 L3403 2013
| |
| 3129 555736606917*2^1290000-1 388341 L3504 2013
| |
| 3130 555042149055*2^1290000-1 388341 L2511 2013
| |
| 3131 552455634117*2^1290000-1 388341 L596 2013
| |
| 3132 552145774407*2^1290000-1 388341 L3371 2013
| |
| 3133 551929936467*2^1290000-1 388341 L2694 2013
| |
| 3134 551474562795*2^1290000-1 388341 L3401 2013
| |
| 3135 550294305207*2^1290000-1 388341 L2576 2013
| |
| 3136 549628699977*2^1290000-1 388341 L3498 2013
| |
| 3137 549591461445*2^1290000-1 388341 L3499 2013
| |
| 3138 547763257797*2^1290000-1 388341 L3381 2013
| |
| 3139 546936507507*2^1290000-1 388341 L2429 2013
| |
| 3140 545735276445*2^1290000-1 388341 L2457 2013
| |
| 3141 544542834225*2^1290000-1 388341 L3321 2013
| |
| 3142 543921100065*2^1290000-1 388341 L3498 2013
| |
| 3143 543713681775*2^1290000-1 388341 L3331 2013
| |
| 3144 542770459917*2^1290000-1 388341 L3203 2013
| |
| 3145 542416935777*2^1290000-1 388341 L3491 2013
| |
| 3146 542283938787*2^1290000-1 388341 L2078 2013
| |
| 3147 541570384875*2^1290000-1 388341 L3493 2013
| |
| 3148 541471202085*2^1290000-1 388341 L3495 2013
| |
| 3149 540975050367*2^1290000-1 388341 L2511 2013
| |
| 3150 538712617707*2^1290000-1 388341 L3492 2013
| |
| 3151 538082595237*2^1290000-1 388341 L2592 2013
| |
| 3152 536358872805*2^1290000-1 388341 L3414 2013
| |
| 3153 535503468705*2^1290000-1 388341 L3486 2013
| |
| 3154 534035409477*2^1290000-1 388341 L3401 2013
| |
| 3155 533170852965*2^1290000-1 388341 L3484 2013
| |
| 3156 532418746785*2^1290000-1 388341 L2513 2013
| |
| 3157 532404378525*2^1290000-1 388341 L3331 2013
| |
| 3158 531855541917*2^1290000-1 388341 L3203 2013
| |
| 3159 531043987287*2^1290000-1 388341 L3488 2013
| |
| 3160 530923354617*2^1290000-1 388341 L3496 2013
| |
| 3161 530777731167*2^1290000-1 388341 L3274 2013
| |
| 3162 529531285257*2^1290000-1 388341 L2429 2013
| |
| 3163 529257936177*2^1290000-1 388341 L2438 2013
| |
| 3164 529057346727*2^1290000-1 388341 L1319 2013
| |
| 3165 528602512707*2^1290000-1 388341 L3482 2013
| |
| 3166 526027719045*2^1290000-1 388341 L3419 2013
| |
| 3167 524341294227*2^1290000-1 388341 L3480 2013
| |
| 3168 524136855195*2^1290000-1 388341 L3321 2013
| |
| 3169 523530466587*2^1290000-1 388341 L3479 2013
| |
| 3170 516998500665*2^1290000-1 388341 L3274 2013
| |
| 3171 514525069425*2^1290000-1 388341 L3401 2013
| |
| 3172 514407948465*2^1290000-1 388341 L3203 2013
| |
| 3173 514090509387*2^1290000-1 388341 L3274 2013
| |
| 3174 513723027177*2^1290000-1 388341 L1948 2013
| |
| 3175 513519859785*2^1290000-1 388341 L1319 2013
| |
| 3176 511783584975*2^1290000-1 388341 L3478 2013
| |
| 3177 510926069745*2^1290000-1 388341 L3203 2013
| |
| 3178 510293735415*2^1290000-1 388341 L3474 2013
| |
| 3179 509489086125*2^1290000-1 388341 L3274 2013
| |
| 3180 504246821325*2^1290000-1 388341 L1704 2013
| |
| 3181 502725411867*2^1290000-1 388341 L324 2013
| |
| 3182 502051417905*2^1290000-1 388341 L3203 2013
| |
| 3183 501535801035*2^1290000-1 388341 L1589 2013
| |
| 3184 501099334437*2^1290000-1 388341 L3394 2013
| |
| 3185 500797558137*2^1290000-1 388341 L3426 2013
| |
| 3186 498983752545*2^1290000-1 388341 L3429 2013
| |
| 3187 498742912167*2^1290000-1 388341 L3433 2013
| |
| 3188 495979824777*2^1290000-1 388341 L3274 2013
| |
| 3189 495395016165*2^1290000-1 388341 L3434 2013
| |
| 3190 492105155355*2^1290000-1 388341 L3429 2013
| |
| 3191 490304446095*2^1290000-1 388341 L2754 2013
| |
| 3192 490219448607*2^1290000-1 388341 L3274 2013
| |
| 3193 488346762615*2^1290000-1 388341 L3274 2013
| |
| 3194 487982955705*2^1290000-1 388341 L3274 2013
| |
| 3195 487546507035*2^1290000-1 388341 L3203 2013
| |
| 3196 487181668965*2^1290000-1 388341 L3370 2013
| |
| 3197 486388606077*2^1290000-1 388341 L3274 2013
| |
| 3198 483590093385*2^1290000-1 388341 L3425 2013
| |
| 3199 483037018875*2^1290000-1 388341 L3364 2013
| |
| 3200 482707780095*2^1290000-1 388341 L1566 2013
| |
| 3201 481466629917*2^1290000-1 388341 L2679 2013
| |
| 3202 481206806505*2^1290000-1 388341 L3274 2013
| |
| 3203 478721887857*2^1290000-1 388341 L2382 2013
| |
| 3204 478231940697*2^1290000-1 388341 L3424 2013
| |
| 3205 478122454647*2^1290000-1 388341 L3274 2013
| |
| 3206 477193095615*2^1290000-1 388341 L3274 2013
| |
| 3207 476420190477*2^1290000-1 388341 L3274 2013
| |
| 3208 475923957327*2^1290000-1 388341 L3408 2013
| |
| 3209 474545076717*2^1290000-1 388341 L3274 2013
| |
| 3210 472272459375*2^1290000-1 388341 L3274 2013
| |
| 3211 471930299277*2^1290000-1 388341 L3274 2013
| |
| 3212 470489079777*2^1290000-1 388341 L3274 2013
| |
| 3213 468362986905*2^1290000-1 388341 L3274 2013
| |
| 3214 468131627955*2^1290000-1 388341 L3274 2013
| |
| 3215 466183143855*2^1290000-1 388341 L3274 2013
| |
| 3216 466053081195*2^1290000-1 388341 L3406 2013
| |
| 3217 466012946187*2^1290000-1 388341 L2511 2013
| |
| 3218 464751767235*2^1290000-1 388341 L341 2013
| |
| 3219 464642860755*2^1290000-1 388341 L3408 2013
| |
| 3220 464211505485*2^1290000-1 388341 L3421 2013
| |
| 3221 462720783765*2^1290000-1 388341 L3274 2013
| |
| 3222 460079202795*2^1290000-1 388341 L3274 2013
| |
| 3223 459743401245*2^1290000-1 388341 L3419 2013
| |
| 3224 458967184485*2^1290000-1 388341 L3203 2013
| |
| 3225 458423603277*2^1290000-1 388341 L1709 2013
| |
| 3226 454117301367*2^1290000-1 388341 L3414 2013
| |
| 3227 453546687195*2^1290000-1 388341 L3411 2013
| |
| 3228 452727224595*2^1290000-1 388341 L1591 2013
| |
| 3229 452642177067*2^1290000-1 388341 L3558 2013
| |
| 3230 452177767305*2^1290000-1 388341 L3274 2013
| |
| 3231 451995338007*2^1290000-1 388341 L3274 2013
| |
| 3232 450384051945*2^1290000-1 388341 L3416 2013
| |
| 3233 449590794345*2^1290000-1 388341 L1920 2013
| |
| 3234 444461468607*2^1290000-1 388341 L3274 2013
| |
| 3235 441308694687*2^1290000-1 388341 L3408 2013
| |
| 3236 439341206577*2^1290000-1 388341 L3420 2013
| |
| 3237 438477490227*2^1290000-1 388341 L3374 2013
| |
| 3238 438364166205*2^1290000-1 388341 L1566 2013
| |
| 3239 437917057497*2^1290000-1 388341 L3407 2013
| |
| 3240 437325048657*2^1290000-1 388341 L3274 2013
| |
| 3241 436607622117*2^1290000-1 388341 L3274 2013
| |
| 3242 436478024895*2^1290000-1 388341 L2511 2013
| |
| 3243 436055812185*2^1290000-1 388341 L2773 2013
| |
| 3244 435927336225*2^1290000-1 388341 L3274 2013
| |
| 3245 435912195117*2^1290000-1 388341 L3203 2013
| |
| 3246 433010529945*2^1290000-1 388341 L3406 2013
| |
| 3247 428717133117*2^1290000-1 388341 L1920 2013
| |
| 3248 428274732825*2^1290000-1 388341 L3351 2013
| |
| 3249 427175730777*2^1290000-1 388341 L3346 2013
| |
| 3250 426981529275*2^1290000-1 388341 L3408 2013
| |
| 3251 426737166705*2^1290000-1 388341 L3274 2013
| |
| 3252 425503288395*2^1290000-1 388341 L3274 2013
| |
| 3253 425299333305*2^1290000-1 388341 L3406 2013
| |
| 3254 422035568997*2^1290000-1 388341 L3274 2013
| |
| 3255 421730567295*2^1290000-1 388341 L3274 2013
| |
| 3256 421019352015*2^1290000-1 388341 L3408 2013
| |
| 3257 418900895157*2^1290000-1 388341 L2511 2013
| |
| 3258 417689147295*2^1290000-1 388341 L2573 2013
| |
| 3259 416920273425*2^1290000-1 388341 L3274 2013
| |
| 3260 416910000045*2^1290000-1 388341 L2414 2013
| |
| 3261 416527998267*2^1290000-1 388341 L1920 2013
| |
| 3262 415200631965*2^1290000-1 388341 L3274 2013
| |
| 3263 413741476575*2^1290000-1 388341 L3402 2013
| |
| 3264 412802577777*2^1290000-1 388341 L3401 2013
| |
| 3265 411400570875*2^1290000-1 388341 L3403 2013
| |
| 3266 408052817385*2^1290000-1 388341 L3274 2013
| |
| 3267 405016485417*2^1290000-1 388341 L3399 2013
| |
| 3268 404450582655*2^1290000-1 388341 L3274 2013
| |
| 3269 403975756275*2^1290000-1 388341 L3274 2013
| |
| 3270 403420675947*2^1290000-1 388341 L958 2013
| |
| 3271 402776612535*2^1290000-1 388341 L1878 2013
| |
| 3272 402258232425*2^1290000-1 388341 L3274 2013
| |
| 3273 402133268805*2^1290000-1 388341 L3274 2013
| |
| 3274 401208945867*2^1290000-1 388341 L3382 2013
| |
| 3275 399430753647*2^1290000-1 388341 L1878 2013
| |
| 3276 398418183117*2^1290000-1 388341 L1219 2013
| |
| 3277 397630568025*2^1290000-1 388341 L3382 2013
| |
| 3278 397062502587*2^1290000-1 388341 L1920 2013
| |
| 3279 395796534105*2^1290000-1 388341 L3398 2013
| |
| 3280 393755567235*2^1290000-1 388341 L1921 2013
| |
| 3281 391663070727*2^1290000-1 388341 L339 2013
| |
| 3282 389472350787*2^1290000-1 388341 L3203 2013
| |
| 3283 388885035327*2^1290000-1 388341 L3396 2013
| |
| 3284 388560534435*2^1290000-1 388341 L2573 2013
| |
| 3285 387306335355*2^1290000-1 388341 L975 2013
| |
| 3286 385503198645*2^1290000-1 388341 L3321 2013
| |
| 3287 382888657287*2^1290000-1 388341 L2265 2013
| |
| 3288 381922845405*2^1290000-1 388341 L3400 2013
| |
| 3289 380782489155*2^1290000-1 388341 L3394 2013
| |
| 3290 380775574335*2^1290000-1 388341 L3393 2013
| |
| 3291 378007820157*2^1290000-1 388341 L2672 2013
| |
| 3292 374411762805*2^1290000-1 388341 L3339 2013
| |
| 3293 369122650197*2^1290000-1 388341 L3274 2013
| |
| 3294 369006330537*2^1290000-1 388341 L955 2013
| |
| 3295 364461749535*2^1290000-1 388341 L3274 2013
| |
| 3296 362503367145*2^1290000-1 388341 L3382 2013
| |
| 3297 361379454135*2^1290000-1 388341 L3382 2013
| |
| 3298 360149900547*2^1290000-1 388341 L2600 2013
| |
| 3299 359877353517*2^1290000-1 388341 L3391 2013
| |
| 3300 359587336335*2^1290000-1 388341 L1866 2013
| |
| 3301 359064382245*2^1290000-1 388341 L2472 2013
| |
| 3302 358210953207*2^1290000-1 388341 L3382 2013
| |
| 3303 355678913445*2^1290000-1 388341 L2283 2013
| |
| 3304 355665110127*2^1290000-1 388341 L2379 2013
| |
| 3305 354721848567*2^1290000-1 388341 L2379 2013
| |
| 3306 351910312257*2^1290000-1 388341 L1920 2013
| |
| 3307 351809291337*2^1290000-1 388341 L3388 2013
| |
| 3308 351479778855*2^1290000-1 388341 L2511 2013
| |
| 3309 349652325447*2^1290000-1 388341 L3387 2013
| |
| 3310 349574475297*2^1290000-1 388341 L2379 2013
| |
| 3311 348711084015*2^1290000-1 388341 L3274 2013
| |
| 3312 347101956357*2^1290000-1 388341 L3392 2013
| |
| 3313 346864603797*2^1290000-1 388341 L3384 2013
| |
| 3314 345129242337*2^1290000-1 388341 L3390 2013
| |
| 3315 343251791157*2^1290000-1 388341 L3383 2013
| |
| 3316 343057896135*2^1290000-1 388341 L3382 2013
| |
| 3317 341816713665*2^1290000-1 388341 L3381 2013
| |
| 3318 341365397037*2^1290000-1 388341 L3380 2013
| |
| 3319 339806310177*2^1290000-1 388341 L3274 2013
| |
| 3320 339519840987*2^1290000-1 388341 L3274 2013
| |
| 3321 336417947565*2^1290000-1 388341 L3274 2013
| |
| 3322 336094377897*2^1290000-1 388341 L3379 2013
| |
| 3323 331571640507*2^1290000-1 388341 L2449 2013
| |
| 3324 329105404995*2^1290000-1 388341 L2090 2013
| |
| 3325 325627281705*2^1290000-1 388341 L1814 2013
| |
| 3326 325022118267*2^1290000-1 388341 L2592 2013
| |
| 3327 324405963567*2^1290000-1 388341 L975 2013
| |
| 3328 323721714825*2^1290000-1 388341 L3374 2013
| |
| 3329 323180607615*2^1290000-1 388341 L324 2013
| |
| 3330 323151630597*2^1290000-1 388341 L2249 2013
| |
| 3331 323062155117*2^1290000-1 388341 L2511 2013
| |
| 3332 323032715775*2^1290000-1 388341 L3321 2013
| |
| 3333 322458158997*2^1290000-1 388341 L2204 2013
| |
| 3334 321326067837*2^1290000-1 388341 L2449 2013
| |
| 3335 318109905615*2^1290000-1 388341 L3373 2013
| |
| 3336 317525245347*2^1290000-1 388341 L3371 2013
| |
| 3337 315206425035*2^1290000-1 388341 L3274 2013
| |
| 3338 314138547285*2^1290000-1 388341 L3274 2013
| |
| 3339 313644839055*2^1290000-1 388341 L3370 2013
| |
| 3340 312580841685*2^1290000-1 388341 L3274 2013
| |
| 3341 312435776037*2^1290000-1 388341 L1704 2013
| |
| 3342 311422843587*2^1290000-1 388341 L1745 2013
| |
| 3343 310812367497*2^1290000-1 388341 L3375 2013
| |
| 3344 310491816507*2^1290000-1 388341 L3346 2013
| |
| 3345 309431698875*2^1290000-1 388341 L3274 2013
| |
| 3346 309125593227*2^1290000-1 388341 L3321 2013
| |
| 3347 307795218687*2^1290000-1 388341 L2379 2013
| |
| 3348 306223342407*2^1290000-1 388341 L3369 2013
| |
| 3349 303771085455*2^1290000-1 388341 L2083 2013
| |
| 3350 300377054607*2^1290000-1 388341 L3364 2013
| |
| 3351 299556989487*2^1290000-1 388341 L3203 2013
| |
| 3352 297145470657*2^1290000-1 388341 L3404 2013
| |
| 3353 295499484735*2^1290000-1 388341 L3274 2013
| |
| 3354 294333095247*2^1290000-1 388341 L3360 2013
| |
| 3355 294176747907*2^1290000-1 388341 L3395 2013
| |
| 3356 293988475497*2^1290000-1 388341 L1697 2013
| |
| 3357 288326168427*2^1290000-1 388341 L3357 2013
| |
| 3358 287991223887*2^1290000-1 388341 L1589 2013
| |
| 3359 286852475595*2^1290000-1 388341 L3255 2013
| |
| 3360 286688330805*2^1290000-1 388341 L3359 2013
| |
| 3361 286622010675*2^1290000-1 388341 L2379 2013
| |
| 3362 286371264795*2^1290000-1 388341 L2249 2013
| |
| 3363 283483489905*2^1290000-1 388341 L2379 2013
| |
| 3364 283269826017*2^1290000-1 388341 L1684 2013
| |
| 3365 283141970085*2^1290000-1 388341 L3355 2013
| |
| 3366 281151438795*2^1290000-1 388341 L2379 2013
| |
| 3367 281120825067*2^1290000-1 388341 L3346 2013
| |
| 3368 278822882037*2^1290000-1 388341 L3203 2013
| |
| 3369 278807949387*2^1290000-1 388341 L2592 2013
| |
| 3370 278469371715*2^1290000-1 388341 L3351 2013
| |
| 3371 275590614537*2^1290000-1 388341 L3365 2013
| |
| 3372 275470214925*2^1290000-1 388341 L3203 2013
| |
| 3373 272759221245*2^1290000-1 388341 L3203 2013
| |
| 3374 270952368585*2^1290000-1 388341 L3349 2013
| |
| 3375 270531056787*2^1290000-1 388341 L3350 2013
| |
| 3376 270043531455*2^1290000-1 388341 L3210 2013
| |
| 3377 269009459325*2^1290000-1 388341 L3274 2013
| |
| 3378 268379334447*2^1290000-1 388341 L3274 2013
| |
| 3379 268081360785*2^1290000-1 388341 L3203 2013
| |
| 3380 267934317495*2^1290000-1 388341 L3332 2013
| |
| 3381 267257797635*2^1290000-1 388341 L3337 2013
| |
| 3382 263847069405*2^1290000-1 388341 L3347 2013
| |
| 3383 262612971045*2^1290000-1 388341 L3274 2013
| |
| 3384 261643415715*2^1290000-1 388341 L2438 2012
| |
| 3385 260849015397*2^1290000-1 388341 L3203 2012
| |
| 3386 260715365475*2^1290000-1 388341 L1929 2012
| |
| 3387 260227577727*2^1290000-1 388341 L3274 2012
| |
| 3388 260109856197*2^1290000-1 388341 L3274 2012
| |
| 3389 260093628975*2^1290000-1 388341 L3346 2012
| |
| 3390 258572084955*2^1290000-1 388341 L3274 2012
| |
| 3391 252970964277*2^1290000-1 388341 L3203 2012
| |
| 3392 251309396835*2^1290000-1 388341 L1319 2012
| |
| 3393 251269114257*2^1290000-1 388341 L1319 2012
| |
| 3394 250180546665*2^1290000-1 388341 L1704 2012
| |
| 3395 248186300367*2^1290000-1 388341 L3274 2012
| |
| 3396 246240340467*2^1290000-1 388341 L3274 2012
| |
| 3397 244704278205*2^1290000-1 388341 L3341 2012
| |
| 3398 244623864417*2^1290000-1 388341 L2354 2012
| |
| 3399 241209176217*2^1290000-1 388341 L3342 2012
| |
| 3400 239413763685*2^1290000-1 388341 L2449 2012
| |
| 3401 234475865655*2^1290000-1 388341 L3274 2012
| |
| 3402 232778043615*2^1290000-1 388341 L3339 2012
| |
| 3403 232740942315*2^1290000-1 388341 L3274 2012
| |
| 3404 232328690025*2^1290000-1 388341 L2457 2012
| |
| 3405 231572092755*2^1290000-1 388341 L3340 2012
| |
| 3406 230348154045*2^1290000-1 388341 L955 2012
| |
| 3407 225597278625*2^1290000-1 388341 L3331 2012
| |
| 3408 223708869267*2^1290000-1 388341 L3337 2012
| |
| 3409 218503291197*2^1290000-1 388341 L3274 2012
| |
| 3410 216416889747*2^1290000-1 388341 L1929 2012
| |
| 3411 214133231697*2^1290000-1 388341 L927 2012
| |
| 3412 213551907327*2^1290000-1 388341 L3274 2012
| |
| 3413 213198352425*2^1290000-1 388341 L3274 2012
| |
| 3414 212135542017*2^1290000-1 388341 L927 2012
| |
| 3415 206951361687*2^1290000-1 388341 L1637 2012
| |
| 3416 204320222925*2^1290000-1 388341 L3330 2012
| |
| 3417 203226067005*2^1290000-1 388341 L3274 2012
| |
| 3418 201526452825*2^1290000-1 388340 L3274 2012
| |
| 3419 200476914855*2^1290000-1 388340 L927 2012
| |
| 3420 199585358175*2^1290000-1 388340 L3274 2012
| |
| 3421 199394692497*2^1290000-1 388340 L3274 2012
| |
| 3422 199294582755*2^1290000-1 388340 L955 2012
| |
| 3423 199069404915*2^1290000-1 388340 L3274 2012
| |
| 3424 198089444247*2^1290000-1 388340 L3274 2012
| |
| 3425 197583066117*2^1290000-1 388340 L955 2012
| |
| 3426 196125259785*2^1290000-1 388340 L3274 2012
| |
| 3427 192026664657*2^1290000-1 388340 L3274 2012
| |
| 3428 191408032317*2^1290000-1 388340 L3274 2012
| |
| 3429 188190677397*2^1290000-1 388340 L3274 2012
| |
| 3430 188177713677*2^1290000-1 388340 L3334 2012
| |
| 3431 187663366467*2^1290000-1 388340 L927 2012
| |
| 3432 180160106877*2^1290000-1 388340 L3331 2012
| |
| 3433 179253304767*2^1290000-1 388340 L927 2012
| |
| 3434 179108866545*2^1290000-1 388340 L3274 2012
| |
| 3435 178994497575*2^1290000-1 388340 L2368 2012
| |
| 3436 178847912745*2^1290000-1 388340 L3330 2012
| |
| 3437 177472004367*2^1290000-1 388340 L2379 2012
| |
| 3438 173890572975*2^1290000-1 388340 L3274 2012
| |
| 3439 164136998667*2^1290000-1 388340 L2449 2012
| |
| 3440 164130856365*2^1290000-1 388340 L3274 2012
| |
| 3441 163354130247*2^1290000-1 388340 L3274 2012
| |
| 3442 162624326205*2^1290000-1 388340 L3274 2012
| |
| 3443 162236489067*2^1290000-1 388340 L3274 2012
| |
| 3444 159234953055*2^1290000-1 388340 L3332 2012
| |
| 3445 157842034035*2^1290000-1 388340 L3274 2012
| |
| 3446 157608823797*2^1290000-1 388340 L3328 2012
| |
| 3447 156343422987*2^1290000-1 388340 L3274 2012
| |
| 3448 151155604437*2^1290000-1 388340 L3322 2012
| |
| 3449 151013786217*2^1290000-1 388340 L2164 2012
| |
| 3450 149875663077*2^1290000-1 388340 L3274 2012
| |
| 3451 148042284915*2^1290000-1 388340 L3274 2012
| |
| 3452 145028100747*2^1290000-1 388340 L3274 2012
| |
| 3453 144643566987*2^1290000-1 388340 L3274 2012
| |
| 3454 144033075777*2^1290000-1 388340 L2679 2012
| |
| 3455 143858211957*2^1290000-1 388340 L3274 2012
| |
| 3456 143727108945*2^1290000-1 388340 L3274 2012
| |
| 3457 142726671747*2^1290000-1 388340 L3274 2012
| |
| 3458 142631667285*2^1290000-1 388340 L2354 2012
| |
| 3459 141451978605*2^1290000-1 388340 L3321 2012
| |
| 3460 139942421115*2^1290000-1 388340 L3274 2012
| |
| 3461 139604474667*2^1290000-1 388340 L3274 2012
| |
| 3462 134368933107*2^1290000-1 388340 L2753 2012
| |
| 3463 129948302025*2^1290000-1 388340 L2164 2012
| |
| 3464 128031171567*2^1290000-1 388340 L3252 2012
| |
| 3465 126206397135*2^1290000-1 388340 L2164 2012
| |
| 3466 125000856225*2^1290000-1 388340 L2457 2012
| |
| 3467 124901305767*2^1290000-1 388340 L3316 2012
| |
| 3468 124490444505*2^1290000-1 388340 L2679 2012
| |
| 3469 120858765657*2^1290000-1 388340 L1430 2012
| |
| 3470 120816250005*2^1290000-1 388340 L3216 2012
| |
| 3471 120238040277*2^1290000-1 388340 L2457 2012
| |
| 3472 119948786085*2^1290000-1 388340 L2457 2012
| |
| 3473 119117512797*2^1290000-1 388340 L1430 2012
| |
| 3474 119033472225*2^1290000-1 388340 L3252 2012
| |
| 3475 117474057165*2^1290000-1 388340 L1588 2012
| |
| 3476 116194215975*2^1290000-1 388340 L2197 2012
| |
| 3477 115619101425*2^1290000-1 388340 L1126 2012
| |
| 3478 113105840787*2^1290000-1 388340 L3287 2012
| |
| 3479 113018799645*2^1290000-1 388340 L3203 2012
| |
| 3480 110657314995*2^1290000-1 388340 L3235 2012
| |
| 3481 110261397207*2^1290000-1 388340 L2197 2012
| |
| 3482 109785059895*2^1290000-1 388340 L1219 2012
| |
| 3483 109728390567*2^1290000-1 388340 L2430 2012
| |
| 3484 109602297105*2^1290000-1 388340 L327 2012
| |
| 3485 108456662097*2^1290000-1 388340 L3274 2012
| |
| 3486 106106030067*2^1290000-1 388340 L3274 2012
| |
| 3487 104252569725*2^1290000-1 388340 L3270 2012
| |
| 3488 103809047877*2^1290000-1 388340 L2679 2012
| |
| 3489 102979478985*2^1290000-1 388340 L3240 2012
| |
| 3490 102649169667*2^1290000-1 388340 L3228 2012
| |
| 3491 102249845505*2^1290000-1 388340 L927 2012
| |
| 3492 100492076865*2^1290000-1 388340 L2504 2012
| |
| 3493 98571391305*2^1290000-1 388340 L2679 2012
| |
| 3494 96382357725*2^1290000-1 388340 L2250 2012
| |
| 3495 95886360717*2^1290000-1 388340 L2680 2012
| |
| 3496 94451818965*2^1290000-1 388340 L1637 2012
| |
| 3497 93693950385*2^1290000-1 388340 L3558 2012
| |
| 3498 93083051085*2^1290000-1 388340 L3235 2012
| |
| 3499 91591849695*2^1290000-1 388340 L2283 2012
| |
| 3500 90446547765*2^1290000-1 388340 L3235 2012
| |
| 3501 88769823315*2^1290000-1 388340 L3235 2012
| |
| 3502 87988707537*2^1290000-1 388340 L3235 2012
| |
| 3503 86374243377*2^1290000-1 388340 L2197 2012
| |
| 3504 85794708807*2^1290000-1 388340 L3252 2012
| |
| 3505 83743656027*2^1290000-1 388340 L3235 2012
| |
| 3506 80303450925*2^1290000-1 388340 L2478 2012
| |
| 3507 78681832677*2^1290000-1 388340 L3228 2012
| |
| 3508 74675041395*2^1290000-1 388340 L3255 2012
| |
| 3509 74231734815*2^1290000-1 388340 L3256 2012
| |
| 3510 72835395717*2^1290000-1 388340 L3252 2012
| |
| 3511 71741989455*2^1290000-1 388340 L3251 2012
| |
| 3512 71626994637*2^1290000-1 388340 L3258 2012
| |
| 3513 67762687755*2^1290000-1 388340 L1684 2012
| |
| 3514 67400286705*2^1290000-1 388340 L927 2012
| |
| 3515 67157081175*2^1290000-1 388340 L3203 2012
| |
| 3516 67098088347*2^1290000-1 388340 L1430 2012
| |
| 3517 66947810457*2^1290000-1 388340 L324 2012
| |
| 3518 64932421227*2^1290000-1 388340 L3247 2012
| |
| 3519 61579159647*2^1290000-1 388340 L324 2012
| |
| 3520 60496370625*2^1290000-1 388340 L324 2012
| |
| 3521 58109428725*2^1290000-1 388340 L324 2012
| |
| 3522 57670269765*2^1290000-1 388340 L1591 2012
| |
| 3523 56617104687*2^1290000-1 388340 L927 2012
| |
| 3524 55829500977*2^1290000-1 388340 L3218 2012
| |
| 3525 53955457827*2^1290000-1 388340 L3242 2012
| |
| 3526 53568698727*2^1290000-1 388340 L3240 2012
| |
| 3527 48325829277*2^1290000-1 388340 L3235 2012
| |
| 3528 47104579725*2^1290000-1 388340 L2407 2012
| |
| 3529 46936849605*2^1290000-1 388340 L3235 2012
| |
| 3530 46395065715*2^1290000-1 388340 L3236 2012
| |
| 3531 41291130657*2^1290000-1 388340 L1866 2012
| |
| 3532 40870411575*2^1290000-1 388340 L3228 2012
| |
| 3533 37892782587*2^1290000-1 388340 L990 2012
| |
| 3534 37336992075*2^1290000-1 388340 L3226 2012
| |
| 3535 35970599667*2^1290000-1 388340 L3226 2012
| |
| 3536 35783326245*2^1290000-1 388340 L3226 2012
| |
| 3537 34158740037*2^1290000-1 388340 L3226 2012
| |
| 3538 31188104787*2^1290000-1 388340 L3204 2012
| |
| 3539 30185015115*2^1290000-1 388340 L3226 2012
| |
| 3540 27706601877*2^1290000-1 388340 L3204 2012
| |
| 3541 26268238845*2^1290000-1 388340 L3227 2012
| |
| 3542 25940129427*2^1290000-1 388340 L3226 2012
| |
| 3543 25759355835*2^1290000-1 388340 L3226 2012
| |
| 3544 24441821505*2^1290000-1 388340 L3226 2012
| |
| 3545 24291776847*2^1290000-1 388340 L3226 2012
| |
| 3546 22811654325*2^1290000-1 388340 L3226 2012
| |
| 3547 22781007375*2^1290000-1 388340 L1684 2012
| |
| 3548 21141924615*2^1290000-1 388340 L1684 2012
| |
| 3549 19793417607*2^1290000-1 388339 L3224 2012
| |
| 3550 15882136965*2^1290000-1 388339 L3218 2012
| |
| 3551 12814002747*2^1290000-1 388339 L1603 2012
| |
| 3552 12257525817*2^1290000-1 388339 L3203 2012
| |
| 3553 11389198515*2^1290000-1 388339 L3216 2012
| |
| 3554 11340242595*2^1290000-1 388339 L3214 2012
| |
| 3555 11211544347*2^1290000-1 388339 L1430 2012
| |
| 3556 8909655825*2^1290000-1 388339 L3210 2012
| |
| 3557 8575097877*2^1290000-1 388339 L3208 2012
| |
| 3558 5792192997*2^1290000-1 388339 L989 2012
| |
| 3559 3347418345*2^1290000-1 388339 L1433 2012
| |
| 3560 3160221645*2^1290000-1 388339 L3203 2012
| |
| 3561 2862479727*2^1290000-1 388339 L3204 2012
| |
| 3562 835738017*2^1290000-1 388338 L596 2012
| |
| 3563 45340243*2^1290000+1 388337 L3494 2014
| |
| 3564 1313*2^1289857+1 388289 L2038 2014
| |
| 3565 3825*2^1289835+1 388283 L3943 2014
| |
| 3566 8859*2^1289562+1 388201 L3034 2014
| |
| 3567 6507*2^1289544+1 388196 L1792 2014
| |
| 3568 455*2^1289501+1 388182 L2909 2012
| |
| 3569 5913*2^1289424+1 388160 L3476 2014
| |
| 3570 1963*2^1289304+1 388123 L2487 2014
| |
| 3571 307*2^1289306+1 388123 L1204 2012
| |
| 3572 6877*2^1289238+1 388104 L3941 2014
| |
| 3573 9067*2^1289228+1 388101 L2562 2014
| |
| 3574 1451*2^1289221+1 388098 L1823 2014
| |
| 3575 9595*2^1289176+1 388085 L2549 2014
| |
| 3576 10^388080-10^112433-1 388080 CH8 2014 Near-repdigit (**)
| |
| 3577 10^388080-10^180868-1 388080 p377 2014 Near-repdigit
| |
| 3578 3821*2^1289141+1 388074 L1741 2014
| |
| 3579 9975*2^1289056-1 388049 L2338 2013
| |
| 3580 665*2^1289005+1 388032 L2816 2011
| |
| 3581 2703*2^1288978+1 388025 L2823 2014
| |
| 3582 8649*2^1288929+1 388011 L2845 2014
| |
| 3583 167*2^1288922-1 388007 L1862 2013
| |
| 3584 6739*2^1288866+1 387992 L3797 2014
| |
| 3585 1595*2^1288823+1 387978 L3271 2014
| |
| 3586 439*2^1288818+1 387976 L2917 2012
| |
| 3587 2181*2^1288743+1 387954 L3942 2014
| |
| 3588 5067*2^1288687+1 387938 L3937 2014
| |
| 3589 5751*2^1288656+1 387928 L1741 2014
| |
| 3590 5247*2^1288639+1 387923 L1185 2014
| |
| 3591 2538*30^262614-1 387917 p268 2012
| |
| 3592 7093*2^1288616+1 387916 L1379 2014
| |
| 3593 4055*2^1288567+1 387901 L2038 2014
| |
| 3594 5667*2^1288522+1 387888 L1741 2014
| |
| 3595 8509*2^1288362+1 387840 L3938 2014
| |
| 3596 1353*2^1288188+1 387787 L2627 2014
| |
| 3597 135*2^1288177-1 387783 L1959 2011
| |
| 3598 4217*2^1287911+1 387704 L3035 2014
| |
| 3599 7335*2^1287812+1 387674 L1972 2014
| |
| 3600 7387*2^1287780+1 387665 L3937 2014
| |
| 3601 527*2^1287756-1 387656 L1817 2013
| |
| 3602 6605*2^1287563+1 387599 L2038 2014
| |
| 3603 2631*2^1287407+1 387552 L3035 2014
| |
| 3604 8061*2^1287215+1 387495 L3797 2014
| |
| 3605 4797*2^1287210+1 387493 L1741 2014
| |
| 3606 1203*2^1287200+1 387489 L2626 2014
| |
| 3607 1153*2^1287198+1 387489 L2815 2011
| |
| 3608 7097*2^1287007+1 387432 L3713 2014
| |
| 3609 3207*2^1286940+1 387412 L1502 2014
| |
| 3610 4111*2^1286884+1 387395 L3928 2014
| |
| 3611 5139*2^1286789+1 387366 L2675 2014
| |
| 3612 5271*2^1286688+1 387336 L3930 2014
| |
| 3613 6819*2^1286677+1 387333 L2845 2014
| |
| 3614 8527*2^1286590+1 387307 L3931 2014
| |
| 3615 5457*2^1286566+1 387299 L3924 2014
| |
| 3616 6495*2^1286528+1 387288 L3927 2014
| |
| 3617 1657*2^1286454+1 387265 L1792 2014
| |
| 3618 4949*2^1286431+1 387259 L1186 2014
| |
| 3619 1665*2^1286419+1 387254 L3439 2014
| |
| 3620 603*2^1286394+1 387246 L2702 2011
| |
| 3621 5511*2^1286381+1 387244 L3926 2014
| |
| 3622 4097*2^1286239+1 387201 L2826 2014
| |
| 3623 6867*2^1286163+1 387178 L3895 2014
| |
| 3624 2067*2^1286047+1 387143 L2664 2014
| |
| 3625 5317*2^1285922+1 387105 L3797 2014
| |
| 3626 5273*2^1285885+1 387094 L3931 2014
| |
| 3627 2723*2^1285805+1 387070 L1408 2014
| |
| 3628 9417*2^1285798+1 387068 L2826 2014
| |
| 3629 2115*2^1285772+1 387060 L3037 2014
| |
| 3630 7685*2^1285735+1 387049 L2613 2014
| |
| 3631 3667*2^1285690+1 387035 L1792 2014
| |
| 3632 2991*2^1285689+1 387035 L3919 2014
| |
| 3633 2757*2^1285670+1 387029 L1741 2014
| |
| 3634 305*2^1285643+1 387020 L1209 2012
| |
| 3635 8681*2^1285439+1 386960 L3922 2014
| |
| 3636 1025*2^1285388-1 386944 L1828 2012
| |
| 3637 795*2^1285388-1 386944 L1817 2014
| |
| 3638 3515*2^1285355+1 386934 L1344 2014
| |
| 3639 9415*2^1285294+1 386917 L2613 2014
| |
| 3640 6101*2^1285091+1 386855 L1124 2014
| |
| 3641 1957*2^1284992+1 386825 L3913 2014
| |
| Divides GF(1284991,6)
| |
| 3642 3963*2^1284962+1 386816 L3035 2014
| |
| 3643 1725*2^1284830+1 386776 L1741 2014
| |
| 3644 1195*2^1284795-1 386765 L1828 2012
| |
| 3645 2383*2^1284786+1 386763 L3912 2014
| |
| 3646 2391*2^1284747+1 386751 L2038 2014
| |
| 3647 4659*2^1284727+1 386746 L3008 2014
| |
| 3648 4271*2^1284713+1 386741 L2049 2014
| |
| 3649 9279*2^1284711+1 386741 L3246 2014
| |
| 3650 8427*2^1284667+1 386728 L3037 2014
| |
| 3651 6239*2^1284619+1 386713 L3035 2014
| |
| 3652 5565*2^1284428+1 386656 L3909 2014
| |
| 3653 243*2^1284429+1 386655 L165 2011 (**)
| |
| 3654 4*257^160422+1 386607 p258 2011 Generalized Fermat
| |
| 3655 9557*2^1284051+1 386542 L2649 2014
| |
| 3656 9851*2^1283975+1 386519 L2997 2014
| |
| 3657 4183*2^1283856+1 386483 L3910 2014
| |
| 3658 138847*2^1283793-1 386466 L2 2003
| |
| 3659 5647*2^1283778+1 386460 L1792 2014
| |
| 3660 2759*2^1283727+1 386444 L3037 2014
| |
| 3661 8535*2^1283674+1 386429 L2038 2014
| |
| 3662 6707*2^1283595+1 386405 L1130 2014
| |
| 3663 453*2^1283560-1 386393 L1817 2013
| |
| 3664 2665*2^1283544+1 386389 L3908 2014
| |
| 3665 1785*2^1283540+1 386388 L3797 2014
| |
| 3666 7763*2^1283497+1 386375 L1792 2014
| |
| 3667 1015*2^1283425-1 386353 L1828 2012
| |
| 3668 4043*2^1283396-1 386345 L1959 2013
| |
| 3669 1893*2^1283297+1 386315 L3907 2014
| |
| 3670 131*2^1283258-1 386302 L1862 2011
| |
| 3671 875*2^1283164-1 386274 L1817 2014
| |
| 3672 8045*2^1283157+1 386273 L1741 2014
| |
| 3673 1605*2^1283068+1 386246 L3035 2014
| |
| 3674 6675*2^1283011+1 386229 L3649 2014
| |
| 3675 9857*2^1282951+1 386211 L1792 2014
| |
| 3676 7805*2^1282933+1 386206 L2659 2014
| |
| 3677 3219*2^1282906+1 386197 L3905 2014
| |
| 3678 5153*2^1282889+1 386192 L1741 2014
| |
| 3679 8819*2^1282837+1 386177 L1792 2014
| |
| 3680 4459*2^1282766+1 386155 L1741 2014
| |
| 3681 5*2^1282755+1 386149 g55 2002
| |
| Divides GF(1282754,3), GF(1282748,5)
| |
| 3682 5609*2^1282695+1 386134 L3727 2014
| |
| 3683 259*2^1282582+1 386099 L1818 2012
| |
| 3684 1145*2^1282568-1 386095 L1828 2012
| |
| 3685 6459*2^1282497+1 386074 L3797 2014
| |
| 3686 3391*2^1282496+1 386074 L2827 2014
| |
| 3687 9625*2^1282410+1 386048 L3035 2014
| |
| 3688 1961*2^1282153+1 385970 L3717 2014
| |
| 3689 1093*2^1282080+1 385948 L2322 2011
| |
| 3690 569*2^1282077+1 385947 L1387 2011
| |
| 3691 1189*2^1282034+1 385934 L2814 2011
| |
| 3692 9409*2^1282030+1 385934 L2038 2014 Generalized Fermat
| |
| 3693 6321*2^1281917+1 385900 L1792 2014
| |
| 3694 4659*2^1281914+1 385899 L2981 2014
| |
| 3695 3007*2^1281862+1 385883 L3262 2014
| |
| 3696 1353*2^1281777+1 385857 L1408 2014
| |
| 3697 2685*2^1281694+1 385832 L1792 2014
| |
| 3698 1141*2^1281659-1 385821 L1828 2012
| |
| 3699 5263*2^1281460+1 385762 L3262 2014
| |
| 3700 181*2^1281453-1 385759 L2484 2011
| |
| 3701 105782*5^551766-1 385673 p306 2010
| |
| 3702 6295*2^1281088+1 385650 L2117 2014
| |
| 3703 767*2^1281080-1 385647 L1817 2013
| |
| 3704 9573*2^1280958+1 385611 L3262 2014
| |
| 3705 759*2^1280948-1 385607 L1817 2013
| |
| 3706 8909*2^1280941+1 385606 L3262 2014
| |
| 3707 7751*2^1280887+1 385590 L3262 2014
| |
| 3708 8319*2^1280861+1 385582 L3246 2014
| |
| 3709 6771*2^1280821+1 385570 L3262 2014
| |
| 3710 9093*2^1280790+1 385561 L1792 2014
| |
| 3711 3943*2^1280698+1 385533 L3262 2014
| |
| 3712 5811*2^1280612+1 385507 L3902 2014
| |
| 3713 6309*2^1280581+1 385498 L3262 2014
| |
| 3714 6181*2^1280464+1 385462 L3865 2014
| |
| 3715 9831*2^1280199+1 385383 L3865 2014
| |
| 3716 2*101^192275+1 385382 L1471 2010
| |
| 3717 6735*2^1280193+1 385381 L1792 2014
| |
| 3718 8631*2^1280181+1 385377 L3014 2014
| |
| 3719 7827*2^1280122+1 385360 L1792 2014
| |
| 3720 623*2^1280125+1 385359 L2659 2011
| |
| 3721 381*2^1279983+1 385316 L2908 2012
| |
| 3722 8547*2^1279759+1 385250 L1733 2014
| |
| 3723 2163*2^1279736+1 385243 L3901 2014
| |
| 3724 6641*2^1279521+1 385179 L3262 2014
| |
| 3725 3339*2^1279502+1 385173 L3262 2014
| |
| 3726 3165*2^1279338+1 385123 L1444 2014
| |
| 3727 6909*2^1279334+1 385122 L3262 2014
| |
| 3728 5961*2^1279309+1 385115 L3727 2014
| |
| 3729 665*2^1279234-1 385091 L1817 2013
| |
| 3730 691*2^1279212+1 385085 L2626 2011
| |
| 3731 1691*2^1279187+1 385077 L3865 2014
| |
| 3732 2475*2^1279165+1 385071 L3262 2014
| |
| 3733 5567*2^1279031+1 385031 L3262 2014
| |
| 3734 9573*2^1279028+1 385030 L1741 2014
| |
| 3735 2151*2^1278969+1 385012 L3859 2014
| |
| 3736 7107*2^1278920+1 384998 L3671 2014
| |
| 3737 945*2^1278825+1 384968 L1595 2011
| |
| 3738 1439*2^1278565+1 384890 L3262 2014 (**)
| |
| 3739 349*2^1278551-1 384885 L579 2010
| |
| 3740 4503*2^1278517+1 384876 L3262 2014
| |
| 3741 1105*2^1278476+1 384863 L2724 2011
| |
| 3742 7905*2^1278334+1 384821 L1792 2014
| |
| 3743 2407*2^1278334+1 384821 L2117 2014
| |
| 3744 231*2^1278235-1 384790 L2338 2012
| |
| 3745 3135*2^1278080+1 384744 L3262 2014
| |
| 3746 9167*2^1278051+1 384736 L3262 2014
| |
| 3747 7527*2^1278043+1 384734 L3898 2014
| |
| 3748 2261*2^1277853+1 384676 L3262 2014
| |
| 3749 4165*2^1277810+1 384663 L2038 2014
| |
| 3750 9405*2^1277796+1 384659 L3262 2014
| |
| 3751 8745*2^1277577+1 384593 L1576 2014
| |
| 3752 7997*2^1277451+1 384555 L3262 2014
| |
| 3753 8129*2^1277413+1 384544 L2626 2014
| |
| 3754 2001*2^1277109-1 384452 L3345 2014
| |
| 3755 2641*2^1277096+1 384448 L2520 2014
| |
| 3756 6849*2^1277093+1 384448 L3035 2014
| |
| 3757 5979*2^1277091+1 384447 L3894 2014
| |
| 3758 7101*2^1277000+1 384420 L3262 2014
| |
| 3759 9547*2^1276978+1 384413 L3262 2014
| |
| 3760 2413*2^1276674+1 384321 L3262 2014
| |
| 3761 141*2^1276616+1 384302 L2612 2012 (**)
| |
| 3762 8727*2^1276471+1 384261 L3262 2014
| |
| 3763 7269*2^1276455+1 384256 L3889 2014
| |
| 3764 1981*2^1276439-1 384250 L1134 2012
| |
| 3765 4759*2^1276322+1 384215 L3511 2014
| |
| 3766 2013*2^1276311-1 384212 L3345 2014
| |
| 3767 15*2^1276177+1 384169 g279 2006
| |
| Divides GF(1276174,3), GF(1276174,10) (**)
| |
| 3768 3951*2^1276136+1 384159 L1125 2014
| |
| 3769 205*2^1275889-1 384084 L384 2010
| |
| 3770 5739*2^1275854+1 384075 L3888 2014
| |
| 3771 255*2^1275596+1 383996 L2533 2012
| |
| 3772 8679*2^1275563+1 383987 L3262 2014
| |
| 3773 4737*2^1275487+1 383964 L3555 2014
| |
| 3774 7971*2^1275429+1 383947 L3555 2014
| |
| 3775 5533*2^1275420+1 383944 L3555 2014
| |
| 3776 1407*2^1275375+1 383930 L2107 2014
| |
| 3777 375*2^1275345-1 383920 L1819 2013
| |
| 3778 8981*2^1275279+1 383902 L2888 2014
| |
| 3779 7343*2^1275245+1 383891 L3893 2014
| |
| 3780 975*2^1274973+1 383809 L2653 2011
| |
| 3781 9317*2^1274819+1 383763 L3824 2014
| |
| 3782 8509*2^1274778+1 383751 L1129 2014
| |
| 3783 757*2^1274676+1 383719 L1935 2011
| |
| 3784 1011*2^1274643+1 383709 L2736 2011
| |
| 3785 5635*2^1274526+1 383675 L3262 2014
| |
| 3786 4969*2^1274494+1 383665 L3262 2014
| |
| 3787 9*10^383643-1 383644 p297 2011 Near-repdigit
| |
| 3788 5523*2^1274412+1 383640 L3262 2014
| |
| 3789 2955*2^1274306-1 383608 L1959 2013
| |
| 3790 8315*2^1274209+1 383580 L3262 2014
| |
| 3791 2445*2^1274079+1 383540 L3199 2014
| |
| 3792 6995*2^1274071+1 383538 L1741 2014
| |
| 3793 8595*2^1274054+1 383533 L3555 2014
| |
| 3794 1185*2^1273795+1 383454 L2732 2011
| |
| 3795 1779*2^1273794+1 383454 L3262 2014
| |
| 3796 9069*2^1273757+1 383444 L3262 2014
| |
| 3797 4477*2^1273732+1 383436 L3824 2014
| |
| 3798 8253*2^1273730+1 383435 L1741 2014
| |
| 3799 147*2^1273684-1 383420 L1959 2011
| |
| 3800 9669*2^1273666+1 383416 L3555 2014
| |
| 3801 1155*2^1273521+1 383372 L1505 2011
| |
| 3802 7317*2^1273503+1 383367 L3885 2014
| |
| 3803 923*2^1273465+1 383355 L2542 2011
| |
| 3804 4215*2^1273246+1 383289 L1792 2014
| |
| 3805 1103*2^1273105+1 383246 L1121 2011 (**)
| |
| 3806 471*2^1273000+1 383214 L1933 2012
| |
| 3807 2733*2^1272954+1 383201 L3262 2014
| |
| 3808 6005*2^1272869+1 383176 L3262 2014
| |
| 3809 6317*2^1272855+1 383172 L3483 2014
| |
| 3810 6723*2^1272810+1 383158 L2520 2014
| |
| 3811 677*2^1272716-1 383129 L1817 2013
| |
| 3812 1625*2^1272685+1 383120 L1741 2014
| |
| 3813 7313*2^1272657+1 383112 L3555 2014
| |
| 3814 643*2^1272644+1 383107 L2522 2011
| |
| 3815 7865*2^1272471+1 383056 L1733 2014
| |
| 3816 89*2^1272457+1 383050 L1204 2011 (**)
| |
| 3817 21701*2^1272326-1 383013 L2055 2012
| |
| 3818 603*2^1272322-1 383010 L2257 2013
| |
| 3819 9051*2^1272304+1 383006 L2038 2014
| |
| 3820 5429*2^1272197+1 382974 L2520 2014
| |
| 3821 8355*2^1272110+1 382948 L1741 2014
| |
| 3822 1347*2^1271948-1 382898 L1828 2012
| |
| 3823 2047*2^1271894+1 382882 L3262 2014
| |
| 3824 8257*2^1271804+1 382856 L3262 2014
| |
| 3825 4053*2^1271773+1 382846 L3824 2014
| |
| 3826 5147*2^1271683+1 382819 L3783 2014
| |
| 3827 9011*2^1271581+1 382788 L3271 2014
| |
| 3828 5811*2^1271548+1 382778 L3262 2014
| |
| 3829 6795*2^1271503+1 382765 L3154 2014
| |
| 3830 108045*2^1271488-1 382762 L466 2013
| |
| 3831 9387*2^1271488+1 382760 L3262 2014
| |
| 3832 8205*2^1271355+1 382720 L1741 2014
| |
| 3833 9387*2^1271326+1 382712 L3262 2014
| |
| 3834 1191*2^1271153-1 382659 L1828 2012
| |
| 3835 5835*2^1271108+1 382646 L1129 2014
| |
| 3836 4167*2^1271064+1 382633 L1413 2014
| |
| 3837 5835*2^1271037+1 382625 L2626 2014
| |
| 3838 3255*2^1271014+1 382617 L2626 2014
| |
| 3839 1385*2^1270984-1 382608 L1828 2012
| |
| 3840 993*2^1270944-1 382596 L1817 2013
| |
| 3841 1011*2^1270883+1 382577 L2813 2011
| |
| 3842 4083*2^1270652+1 382508 L3859 2014
| |
| 3843 4993*2^1270616+1 382498 L2626 2014
| |
| 3844 1869*2^1270554+1 382479 L1741 2014
| |
| 3845 6849*2^1270337+1 382414 L3859 2014
| |
| 3846 7427*2^1270275+1 382395 L2785 2014
| |
| 3847 4665*2^1270202+1 382373 L3859 2014
| |
| 3848 4069*2^1270119-1 382348 L1959 2013
| |
| 3849 4239*2^1270071+1 382334 L1733 2014
| |
| 3850 5487*2^1270040+1 382324 L3877 2014
| |
| 3851 4811*2^1269857+1 382269 L2520 2014
| |
| 3852 163747*6^491241-1 382266 L2841 2012
| |
| Generalized Woodall (**)
| |
| 3853 5327*2^1269751+1 382237 L3035 2014
| |
| 3854 3479*2^1269701+1 382222 L3262 2014
| |
| 3855 6337*2^1269674+1 382214 L3262 2014
| |
| 3856 475*2^1269578+1 382184 L2802 2012
| |
| 3857 70*383^147947-1 382179 L2012 2014
| |
| 3858 3331*2^1269404+1 382133 L2322 2014
| |
| 3859 1739*2^1269221+1 382077 L2517 2014
| |
| 3860 251*2^1269198-1 382070 L251 2010
| |
| 3861 565*2^1269153-1 382056 L1817 2013
| |
| 3862 8793*2^1269062+1 382030 L3035 2014
| |
| 3863 781*2^1269036+1 382021 L1935 2011
| |
| 3864 1268979*2^1268979-1 382007 L201 2007 Woodall
| |
| 3865 1235*2^1268980-1 382005 L1828 2012
| |
| 3866 5931*2^1268949+1 381996 L3881 2014
| |
| 3867 7315*2^1268942+1 381994 L3797 2014
| |
| 3868 9487*2^1268934+1 381992 L2981 2014
| |
| 3869 2769*2^1268925+1 381988 L2840 2014
| |
| 3870 2459*2^1268661+1 381909 L2785 2014
| |
| 3871 5313*2^1268624+1 381898 L3878 2014
| |
| 3872 671600^65536+1 381886 g55 2002 Generalized Fermat
| |
| 3873 225*2^1268579+1 381883 L2085 2012
| |
| 3874 6725*2^1268551+1 381876 L3035 2014
| |
| 3875 193*2^1268399-1 381829 L1959 2011
| |
| 3876 5233*2^1268176+1 381763 L2549 2014
| |
| 3877 3573*2^1268010+1 381713 L2626 2014
| |
| 3878 3731*2^1268003+1 381711 L2649 2014
| |
| 3879 7393*2^1267734+1 381630 L3035 2014
| |
| 3880 4213*2^1267666+1 381610 L1741 2014
| |
| 3881 965*2^1267454-1 381545 L1817 2013
| |
| 3882 3207*2^1267439+1 381541 L3309 2014
| |
| 3883 5241*2^1267309+1 381502 L2785 2014
| |
| 3884 8537*2^1267263+1 381489 L3878 2014
| |
| 3885 9163*2^1267256+1 381487 L3279 2014
| |
| 3886 973*2^1267246+1 381483 L1745 2011
| |
| 3887 1041*2^1267241-1 381481 L1828 2012
| |
| 3888 987*2^1267175+1 381461 L2545 2011
| |
| 3889 4731*2^1267159+1 381457 L3035 2014
| |
| 3890 813*2^1267125+1 381446 L2821 2011
| |
| 3891 4215*2^1267033+1 381419 L2549 2014
| |
| 3892 937*2^1267000+1 381408 L2503 2011
| |
| 3893 9543*2^1266921+1 381386 L3262 2014
| |
| 3894 4051*2^1266809-1 381352 L1959 2013
| |
| 3895 7645*2^1266736+1 381330 L1479 2014
| |
| 3896 7479*2^1266635+1 381300 L1741 2014
| |
| 3897 7629*2^1266613+1 381293 L3262 2014
| |
| 3898 9479*2^1266575+1 381282 L3882 2014
| |
| 3899 3277*2^1266516+1 381263 L3786 2014
| |
| 3900 1411*2^1266504+1 381259 L2873 2014
| |
| 3901 2175*2^1266475-1 381251 L1862 2013
| |
| 3902 5395*2^1266442+1 381241 L1741 2014
| |
| 3903 7595*2^1266427+1 381237 L1806 2014
| |
| 3904 6861*2^1266348+1 381213 L3555 2014
| |
| 3905 7625*2^1266329+1 381207 L3262 2014
| |
| 3906 9341*2^1266173+1 381161 L1792 2014
| |
| 3907 3321*2^1266069+1 381129 L2659 2014
| |
| 3908 5505*2^1266048+1 381123 L2549 2014
| |
| 3909 1603*2^1266006+1 381109 L1741 2014
| |
| 3910 1243*2^1265912+1 381081 L3262 2014
| |
| 3911 8289*2^1265697+1 381017 L3875 2014
| |
| 3912 609*2^1265279-1 380890 L1817 2013
| |
| 3913 8945*2^1265105+1 380839 L3872 2014
| |
| 3914 3801*2^1264748+1 380731 L3786 2014
| |
| 3915 5013*2^1264728+1 380725 L3294 2014
| |
| 3916 8205*2^1264708+1 380719 L3514 2014
| |
| 3917 9233*2^1264561+1 380675 L1130 2014
| |
| 3918 5745*2^1264513+1 380661 L3675 2014
| |
| 3919 2505*2^1264470-1 380647 L1959 2013
| |
| 3920 6525*2^1264263+1 380585 L1792 2014
| |
| 3921 6023*2^1264241+1 380579 L3262 2014
| |
| 3922 8711*2^1264061+1 380525 L3257 2014
| |
| 3923 6231*2^1264049+1 380521 L2520 2014
| |
| 3924 5319*2^1263971+1 380497 L1792 2014
| |
| 3925 8547*2^1263915+1 380481 L1158 2014
| |
| 3926 9111*2^1263843+1 380459 L3035 2014
| |
| 3927 911*2^1263831+1 380454 L2812 2011
| |
| 3928 733*2^1263802+1 380446 L2048 2011
| |
| 3929 109988*5^544269+1 380433 p292 2011
| |
| 3930 1197*2^1263698+1 380415 L2375 2011
| |
| 3931 873*2^1263679-1 380409 L2257 2013
| |
| 3932 1425*2^1263665-1 380405 L1134 2012
| |
| 3933 2239*2^1263658+1 380403 L2517 2014
| |
| 3934 3875*2^1263619+1 380391 L1745 2014
| |
| 3935 481*2^1263444+1 380338 L2826 2012
| |
| 3936 2191*2^1263392+1 380323 L3836 2014
| |
| 3937 8649*2^1263389+1 380322 L2649 2014
| |
| 3938 2325*2^1263290+1 380292 L3836 2014
| |
| 3939 7543*2^1263244+1 380279 L3262 2014
| |
| 3940 4991*2^1263197+1 380264 L3262 2014
| |
| 3941 3954*148^175188-1 380208 p268 2012
| |
| 3942 789*2^1262973+1 380196 L2805 2011
| |
| 3943 3491*2^1262889+1 380172 L3835 2014
| |
| 3944 1611*2^1262857+1 380162 L2327 2014
| |
| 3945 957*2^1262808-1 380147 L1817 2013
| |
| 3946 6375*2^1262713+1 380119 L2626 2014
| |
| 3947 7221*2^1262652+1 380100 L2125 2014
| |
| 3948 4455*2^1262558+1 380072 L3262 2014
| |
| 3949 3843*2^1262384+1 380020 L1761 2014
| |
| 3950 6625*2^1262370+1 380016 L1204 2014
| |
| 3951 5739*2^1262267+1 379984 L3851 2014
| |
| 3952 4651*2^1262232+1 379974 L3262 2014
| |
| 3953 5965*2^1262096+1 379933 L3171 2014
| |
| 3954 993*2^1262086+1 379929 L2711 2011
| |
| 3955 8599*2^1262070+1 379925 L3262 2014
| |
| 3956 3547*2^1261978+1 379897 L3698 2014
| |
| 3957 4157*2^1261974-1 379896 L1959 2013
| |
| 3958 8681*2^1261845+1 379858 L2890 2014
| |
| 3959 5529*2^1261793+1 379842 L3262 2014
| |
| 3960 2559*2^1261627+1 379791 L1741 2014
| |
| 3961 6395*2^1261595+1 379782 L2545 2014
| |
| 3962 3597*2^1261576+1 379776 L1982 2014
| |
| 3963 11*2^1261478-1 379744 L163 2006
| |
| 3964 7057*2^1261444+1 379737 L3262 2014
| |
| 3965 7571*2^1261313+1 379697 L3856 2014
| |
| 3966 7037*2^1261259+1 379681 L2866 2014
| |
| 3967 6681*2^1261160+1 379651 L1344 2014
| |
| 3968 1779*2^1261057+1 379620 L3430 2014
| |
| 3969 6147*2^1261044+1 379616 L1158 2014
| |
| 3970 1035*2^1260911-1 379576 L1828 2012
| |
| 3971 48166*151^174188+1 379557 p365 2013
| |
| 3972 7549*2^1260758+1 379530 L1761 2014
| |
| 3973 3231*2^1260728+1 379521 L3834 2014
| |
| 3974 9905*2^1260565+1 379472 L3879 2014
| |
| 3975 5133*2^1260537+1 379464 L3668 2014
| |
| 3976 8157*2^1260398+1 379422 L3262 2014
| |
| 3977 5847*2^1260334+1 379403 L3850 2014
| |
| 3978 4567*2^1260278+1 379386 L2840 2014
| |
| 3979 4205*2^1260223+1 379369 L1158 2014
| |
| 3980 105*2^1260218+1 379366 L1751 2011
| |
| 3981 3391*2^1260200+1 379362 L2626 2014
| |
| 3982 977*2^1260108-1 379334 L2257 2013
| |
| 3983 1063*2^1260091-1 379329 L1828 2012
| |
| 3984 717*2^1260087+1 379327 L2545 2011 (**)
| |
| 3985 6555*2^1260074-1 379324 L840 2014
| |
| 3986 291*2^1260056+1 379318 L2562 2012
| |
| 3987 8857*2^1260018+1 379308 L1741 2014
| |
| 3988 5653*2^1259954+1 379288 L1745 2014
| |
| 3989 4037*2^1259918-1 379277 L1959 2013
| |
| 3990 5541*2^1259891+1 379269 L1158 2014
| |
| 3991 433*2^1259831-1 379250 L1817 2013
| |
| 3992 68492*5^542553+1 379234 L2342 2011
| |
| 3993 26*941^127533+1 379233 L1471 2012
| |
| 3994 9229*2^1259754+1 379228 L3877 2014
| |
| 3995 4925*2^1259671+1 379203 L3199 2014
| |
| 3996 2557*2^1259640+1 379193 L1741 2014
| |
| 3997 8281*2^1259564+1 379171 L2517 2014 Generalized Fermat
| |
| 3998 2871*2^1259533+1 379161 L3830 2014
| |
| 3999 3159*2^1259458+1 379139 L1741 2014
| |
| 4000 6603*2^1259313+1 379095 L3262 2014
| |
| 4001 7041*2^1259284+1 379087 L3766 2014
| |
| 4002 741*2^1259168+1 379051 L2659 2011
| |
| 4003 6377*2^1259159+1 379049 L3262 2014
| |
| 4004 6731*2^1259115+1 379036 L2626 2014
| |
| 4005 7723*2^1259100+1 379031 L1158 2014
| |
| 4006 2595*2^1259083+1 379026 L3035 2014
| |
| 4007 3677*2^1258923+1 378978 L2038 2014 (**)
| |
| 4008 2999*2^1258905+1 378972 L3833 2014
| |
| 4009 5775*2^1258855+1 378957 L3262 2014
| |
| 4010 5141*2^1258761+1 378929 L2831 2014
| |
| 4011 4521*2^1258753+1 378927 L1792 2014
| |
| 4012 7393*2^1258710+1 378914 L2549 2014
| |
| 4013 525*2^1258688+1 378906 L2811 2011
| |
| 4014 9473*2^1258653+1 378897 L3105 2014
| |
| 4015 6883*2^1258580+1 378875 L3854 2014
| |
| 4016 25*2^1258562+1 378867 g279 2004
| |
| Generalized Fermat (**)
| |
| 4017 8765*2^1258495+1 378849 L2549 2014
| |
| 4018 5627*2^1258483+1 378845 L3848 2014
| |
| 4019 781*2^1258420+1 378826 L2085 2011
| |
| 4020 1831*2^1258364+1 378809 L1204 2014
| |
| 4021 6993*2^1258269+1 378781 L3743 2014
| |
| 4022 9973*2^1258180+1 378754 L3671 2014
| |
| 4023 4005*2^1258162-1 378749 L1959 2013
| |
| 4024 571*2^1258052+1 378715 L1149 2011
| |
| 4025 917*2^1258011+1 378703 L2702 2011
| |
| 4026 9339*2^1257938+1 378682 L3262 2014
| |
| 4027 1219*2^1257913-1 378673 L1828 2012
| |
| 4028 883*2^1257858+1 378656 L2085 2011
| |
| 4029 321*2^1257859+1 378656 L2038 2012
| |
| 4030 5309*2^1257831+1 378649 L3810 2014
| |
| 4031 2084259*2^1257787-1 378638 L466 2008
| |
| 4032 1089904*(2^1257787-1)+1 378638 p373 2014
| |
| 4033 987537*2^1257787+1 378638 L466 2011
| |
| 4034 280680*(2^1257787-1)+1 378638 p373 2014 (**)
| |
| 4035 26869*2^1257787-1 378637 L466 2007
| |
| 4036 2^1257787-1 378632 SG 1996 Mersenne 34 (**)
| |
| 4037 9885*2^1257719+1 378616 L1792 2014
| |
| 4038 9717*2^1257694+1 378608 L3262 2014
| |
| 4039 5765*2^1257681+1 378604 L3430 2014
| |
| 4040 8787*2^1257644+1 378593 L2520 2014
| |
| 4041 7663*2^1257562+1 378568 L3262 2014
| |
| 4042 291*2^1257405-1 378520 L2338 2012
| |
| 4043 2661*2^1257361+1 378507 L2675 2014
| |
| 4044 9965*2^1257335+1 378500 L2038 2014
| |
| 4045 3075*2^1257333+1 378499 L3813 2014
| |
| 4046 3657*2^1257314+1 378493 L3514 2014
| |
| 4047 5377*2^1257308+1 378492 L3797 2014
| |
| 4048 6519*2^1257299+1 378489 L2038 2014
| |
| 4049 49*2^1257295-1 378486 L217 2008
| |
| 4050 1621*2^1257140+1 378441 L2038 2014
| |
| 4051 6201*2^1257068+1 378419 L667 2008
| |
| 4052 8361*2^1257051+1 378414 L3137 2014
| |
| 4053 555*2^1257047+1 378412 L2716 2011
| |
| 4054 119*2^1256952-1 378383 L2338 2011
| |
| 4055 3763*2^1256864+1 378358 L1204 2014
| |
| 4056 983*2^1256756-1 378325 L1817 2013
| |
| 4057 2681*2^1256743+1 378321 L1741 2014
| |
| 4058 2609*2^1256605+1 378280 L1344 2014
| |
| 4059 1491*2^1256564+1 378267 L3713 2014
| |
| 4060 6647*2^1256551+1 378264 L3262 2014
| |
| 4061 1485*2^1256516+1 378253 L1134 2012
| |
| 4062 793*2^1256511-1 378251 L1817 2013
| |
| 4063 2361*2^1256459+1 378236 L2520 2014
| |
| 4064 9907*2^1256314+1 378193 L3262 2014
| |
| 4065 8193*2^1256262+1 378177 L3262 2014
| |
| 4066 4151*2^1256259+1 378176 L1745 2014
| |
| 4067 3159*2^1256259+1 378176 L3105 2014
| |
| 4068 8745*2^1256229+1 378167 L3854 2014
| |
| 4069 6615*2^1256156+1 378145 L3262 2014
| |
| 4070 89725*2^1256151-1 378145 p260 2012
| |
| Generalized Woodall (**)
| |
| 4071 9919*2^1256054+1 378114 L1792 2014
| |
| 4072 2217*2^1255980+1 378091 L3763 2014
| |
| 4073 341*2^1255881+1 378061 L2824 2012
| |
| 4074 693*2^1255879-1 378061 L1817 2013
| |
| 4075 7247*2^1255827+1 378046 L1158 2014
| |
| 4076 6187*2^1255796+1 378037 L1158 2014
| |
| 4077 579*2^1255762+1 378025 L2810 2011
| |
| 4078 2163*2^1255556+1 377964 L2873 2014
| |
| 4079 4097*2^1255462-1 377936 L1959 2013
| |
| 4080 (935695*2^627694+3)^2+(1123581*2^313839)^2
| |
| 377922 x29 2012 (**)
| |
| 4081 4065*2^1255375+1 377910 L2626 2014
| |
| 4082 4271*2^1255289+1 377884 L3262 2014
| |
| 4083 691*2^1255260+1 377874 L2820 2011
| |
| 4084 5031*2^1255249+1 377872 L3786 2014
| |
| 4085 502051!7+1 377722 p3 2012 Multifactorial
| |
| 4086 1289*2^1254635+1 377686 L2967 2014
| |
| 4087 6555*2^1254508-1 377649 L3887 2014
| |
| 4088 3221*2^1254483+1 377641 L3763 2014
| |
| 4089 7149*2^1254463+1 377635 L3713 2014
| |
| 4090 5427*2^1254444+1 377630 L3262 2014
| |
| 4091 6945*2^1254274+1 377578 L3262 2014 (**)
| |
| 4092 6045*2^1254150+1 377541 L1492 2014
| |
| 4093 81*2^1254155+1 377541 gt 2007
| |
| 4094 815*2^1253904-1 377466 L2257 2013
| |
| 4095 27*2^1253870-1 377454 L65 2008
| |
| 4096 3249*2^1253758+1 377423 L3430 2014 Generalized Fermat
| |
| 4097 2847*2^1253644+1 377388 L1502 2014
| |
| 4098 9441*2^1253589+1 377372 L3262 2014
| |
| 4099 8923*2^1253430+1 377324 L3262 2014
| |
| 4100 4533*2^1253153+1 377241 L1761 2014
| |
| 4101 745*2^1253108+1 377226 L2522 2011
| |
| 4102 2563*2^1253084+1 377220 L2714 2014
| |
| 4103 6659*2^1252899+1 377165 L2520 2014
| |
| 4104 1041*2^1252387-1 377010 L1828 2012
| |
| 4105 5285*2^1252317+1 376989 L3262 2014
| |
| 4106 9481*2^1252236+1 376965 L3262 2014
| |
| 4107 5035*2^1252208+1 376956 L2062 2014
| |
| 4108 9359*2^1252051+1 376909 L3262 2014
| |
| 4109 5427*2^1252036+1 376905 L3743 2014
| |
| 4110 2413*2^1251948+1 376878 L2038 2014
| |
| 4111 7695*2^1251827+1 376842 L3262 2014
| |
| 4112 9927*2^1251727+1 376812 L1741 2014
| |
| 4113 9915*2^1251675+1 376796 L3786 2014
| |
| 4114 877*2^1251678+1 376796 L2655 2011
| |
| 4115 8511*2^1251664+1 376793 L3262 2014
| |
| 4116 585*2^1251530+1 376751 L2809 2011
| |
| 4117 7795*2^1251344+1 376696 L2520 2014
| |
| 4118 1395*2^1251292-1 376680 L1828 2012
| |
| 4119 2319*2^1251235+1 376663 L3824 2014
| |
| 4120 3773*2^1251125+1 376630 L1741 2014
| |
| 4121 80857169*2^1251076-1 376620 L10 2004
| |
| 4122 2711*2^1250775+1 376525 L1741 2014
| |
| 4123 1123*2^1250755-1 376518 L1828 2012
| |
| 4124 7985*2^1250517+1 376448 L1492 2014 (**)
| |
| 4125 1961*2^1250515+1 376446 L1745 2014
| |
| 4126 3835*2^1250486+1 376438 L3763 2014
| |
| 4127 8055*2^1250479+1 376436 L2327 2014
| |
| 4128 7087*2^1250288+1 376379 L2520 2014
| |
| 4129 7477*2^1250284+1 376377 L2626 2014
| |
| 4130 5547*2^1250222+1 376359 L2520 2014
| |
| 4131 1749*2^1250174+1 376344 L3763 2014
| |
| 4132 181*2^1250169-1 376341 L2074 2011
| |
| 4133 9081*2^1250127+1 376330 L3294 2014
| |
| 4134 6919*2^1250118+1 376327 L2875 2014
| |
| 4135 775*2^1250106+1 376323 L2549 2011
| |
| 4136 57023*6^483561-1 376289 p258 2009
| |
| 4137 871*2^1249947-1 376275 L2257 2013
| |
| 4138 4747*2^1249792+1 376229 L3035 2014
| |
| 4139 6819*2^1249746+1 376215 L3820 2014
| |
| 4140 9147*2^1249714+1 376206 L1456 2014
| |
| 4141 8405*2^1249683+1 376196 L1741 2014
| |
| 4142 549868^65536+1 376194 g295 2003 Generalized Fermat
| |
| 4143 3295*2^1249632+1 376181 L3035 2014
| |
| 4144 1043*2^1249633+1 376181 L2540 2011
| |
| 4145 9141*2^1249535+1 376152 L3750 2014
| |
| 4146 2173*2^1249518+1 376146 L2126 2014
| |
| 4147 2039*2^1249481+1 376135 L3262 2014
| |
| 4148 5863*2^1249450+1 376126 L3262 2014
| |
| 4149 207*2^1249252+1 376065 L2906 2012
| |
| 4150 201*2^1249030-1 375998 L1862 2011
| |
| 4151 8481*2^1248980+1 375985 L3262 2014
| |
| 4152 7519*2^1248978+1 375984 L3262 2014
| |
| 4153 2475*2^1248927+1 375968 L3294 2014
| |
| 4154 3525*2^1248844+1 375944 L1689 2014
| |
| 4155 6969*2^1248837+1 375942 L3588 2014
| |
| 4156 6675*2^1248833+1 375941 L1753 2014
| |
| 4157 6413*2^1248785+1 375926 L2038 2014
| |
| 4158 9801*2^1248728+1 375909 L1456 2014 Generalized Fermat
| |
| 4159 544118^65536+1 375895 g295 2002 Generalized Fermat
| |
| 4160 5105*2^1248407+1 375812 L3588 2014
| |
| 4161 6487*2^1248334+1 375790 L3262 2014
| |
| 4162 7447*2^1248322+1 375787 L1733 2014
| |
| 4163 7245*2^1248284-1 375775 L2074 2014
| |
| 4164 5249*2^1248251+1 375765 L2048 2014
| |
| 4165 9431*2^1248235+1 375761 L3476 2014
| |
| 4166 6583*2^1248096+1 375719 L2064 2014
| |
| 4167 821*2^1248033+1 375699 L2808 2011
| |
| 4168 391*2^1247959-1 375676 L644 2010
| |
| 4169 43902*31^251859-1 375618 L2054 2011
| |
| 4170 4501*2^1247696+1 375598 L3035 2014
| |
| 4171 8163*2^1247670+1 375591 L2583 2014
| |
| 4172 3555*2^1247657+1 375586 L3793 2014
| |
| 4173 2955*2^1247530+1 375548 L3588 2014
| |
| 4174 1217*2^1247387+1 375504 L1741 2014
| |
| 4175 9395*2^1247361+1 375498 L1186 2014
| |
| 4176 3817*2^1247292+1 375476 L3262 2014
| |
| 4177 4091*2^1247289+1 375476 L1546 2014
| |
| 4178 7613*2^1247249+1 375464 L3262 2014
| |
| 4179 7813*2^1247000+1 375389 L3262 2014
| |
| 4180 5289*2^1246925+1 375366 L3262 2014
| |
| 4181 6171*2^1246721+1 375305 L2038 2014
| |
| 4182 1269*2^1246504-1 375239 L1828 2012
| |
| 4183 3865*2^1246460+1 375226 L3713 2014
| |
| 4184 9255*2^1246398+1 375208 L2873 2014
| |
| 4185 5083*2^1246238+1 375159 L3262 2014
| |
| 4186 9045*2^1246134+1 375128 L3825 2014
| |
| 4187 7929*2^1246095+1 375116 L2279 2014
| |
| 4188 7947*2^1246023+1 375095 L1990 2014
| |
| 4189 329*2^1246017+1 375092 L2085 2012
| |
| Divides Fermat F(1246013) (**)
| |
| 4190 2921*2^1246009+1 375090 L2790 2014
| |
| 4191 4345*2^1245994+1 375086 L3262 2014
| |
| 4192 6741*2^1245924+1 375065 L3262 2014
| |
| 4193 2305*2^1245910+1 375060 L3699 2014
| |
| 4194 2053*12^347512-1 375032 p255 2012
| |
| 4195 979*2^1245698+1 374996 L2826 2011
| |
| 4196 5017*2^1245678+1 374991 L3262 2014
| |
| 4197 9679*2^1245666+1 374987 L3727 2014
| |
| 4198 6535*2^1245590+1 374964 L3790 2014
| |
| 4199 4117*2^1245557-1 374954 L1959 2013
| |
| 4200 9673*2^1245548+1 374952 L1204 2014
| |
| 4201 22*3^785831-1 374939 L3326 2012
| |
| 4202 6177*2^1245440+1 374919 L3791 2014
| |
| 4203 5445*2^1245349-1 374892 L2484 2014
| |
| 4204 3009*2^1245334+1 374887 L1774 2014
| |
| 4205 3141*2^1245168+1 374837 L3262 2014
| |
| 4206 153*2^1245154-1 374831 L1959 2011
| |
| 4207 1061*2^1245114-1 374820 L1828 2012
| |
| 4208 8993*2^1245093+1 374815 L1741 2014
| |
| 4209 5175*2^1245070+1 374808 L3262 2014
| |
| 4210 4197*2^1245038-1 374798 L1959 2013
| |
| 4211 5799*2^1245023+1 374794 L1990 2014
| |
| 4212 3053*2^1244925+1 374764 L3262 2014
| |
| 4213 7753*2^1244902+1 374757 L3588 2014
| |
| 4214 4019*2^1244799+1 374726 L3262 2014
| |
| 4215 8175*2^1244756+1 374713 L2583 2014
| |
| 4216 165*2^1244739+1 374706 L1562 2012 (**)
| |
| 4217 9791*2^1244733+1 374706 L2279 2014
| |
| 4218 9089*2^1244733+1 374706 L3814 2014
| |
| 4219 9297*2^1244646+1 374680 L3158 2014
| |
| 4220 375*2^1244550+1 374650 L1158 2012
| |
| 4221 2991*2^1244532+1 374645 L1753 2014
| |
| 4222 3625*2^1244512+1 374640 L2322 2014
| |
| 4223 1209*2^1244507-1 374638 L1828 2012
| |
| 4224 3207*2^1244504+1 374637 L3588 2014
| |
| 4225 9709*2^1244394+1 374604 L3760 2014
| |
| 4226 15*2^1244377+1 374596 g279 2006 (**)
| |
| 4227 1167*2^1244321-1 374582 L1828 2012
| |
| 4228 2469*2^1244310+1 374579 L3668 2014
| |
| 4229 8617*2^1244202+1 374547 L1733 2014
| |
| 4230 8479*2^1244154+1 374532 L3588 2014
| |
| 4231 178602*5^535806-1 374518 L2777 2012
| |
| Generalized Woodall (**)
| |
| 4232 2965*2^1244104+1 374517 L2117 2014
| |
| 4233 169*2^1243903-1 374455 L282 2010
| |
| 4234 7*362^146341-1 374445 L1471 2011
| |
| 4235 1835*2^1243831+1 374434 L3668 2014
| |
| 4236 4715*2^1243711+1 374398 L3768 2014
| |
| 4237 6107*2^1243647+1 374379 L3766 2014
| |
| 4238 8433*2^1243549+1 374350 L1204 2014
| |
| 4239 1017*2^1243364+1 374293 L2807 2011
| |
| 4240 423*2^1243214-1 374248 L1817 2013
| |
| 4241 1245*2^1243197-1 374243 L1828 2012
| |
| 4242 825*2^1243193+1 374242 L2730 2011 (**)
| |
| 4243 1443*2^1243128+1 374222 L3588 2014
| |
| 4244 3031*2^1243024+1 374191 L3766 2014
| |
| 4245 9675*2^1242970+1 374176 L3698 2014
| |
| 4246 5499*2^1242938+1 374166 L2520 2014
| |
| 4247 1041*2^1242900+1 374154 L2413 2011
| |
| 4248 8169*2^1242691+1 374092 L3760 2014
| |
| 4249 9201*2^1242669+1 374085 L1204 2014
| |
| 4250 139*2^1242661-1 374081 L2074 2012
| |
| 4251 257708*5^535176-1 374078 p196 2007
| |
| 4252 1415*2^1242423+1 374010 L2413 2014
| |
| 4253 8729*2^1242411+1 374007 L3588 2014
| |
| 4254 7649*2^1242315+1 373978 L3262 2014
| |
| 4255 9123*2^1242288+1 373970 L3262 2014
| |
| 4256 119*2^1242207+1 373944 L1751 2011 (**)
| |
| 4257 9867*2^1242011+1 373887 L3262 2014
| |
| 4258 4449*2^1241866+1 373843 L1733 2014
| |
| 4259 9239*2^1241735+1 373804 L3262 2014
| |
| 4260 123*2^1241690-1 373789 L1959 2011
| |
| 4261 7659*2^1241665+1 373783 L3262 2014
| |
| 4262 6771*2^1241653+1 373779 L3262 2014
| |
| 4263 4329*2^1241649+1 373778 L1741 2014
| |
| 4264 707*2^1241499+1 373732 L2806 2011
| |
| 4265 2105*2^1241419+1 373708 L3262 2014
| |
| 4266 9549*2^1241411+1 373706 L3262 2014
| |
| 4267 5513*2^1241337+1 373684 L3668 2014
| |
| 4268 673*2^1241262+1 373660 L2805 2011 (**)
| |
| 4269 5345*2^1241241+1 373655 L2413 2014
| |
| 4270 285*2^1241173+1 373633 L2085 2012
| |
| 4271 3037*2^1241074+1 373604 L2531 2014
| |
| 4272 1077*2^1240976+1 373575 L2085 2011
| |
| 4273 4753*2^1240894+1 373550 L1741 2014
| |
| 4274 9663*2^1240757+1 373510 L3806 2014
| |
| 4275 9079*2^1240750+1 373507 L1160 2014
| |
| 4276 27029*2^1240648-1 373477 L2055 2011
| |
| 4277 7839*2^1240646+1 373476 L3262 2014
| |
| 4278 8907*2^1240578+1 373456 L1204 2014
| |
| 4279 4715*2^1240543+1 373445 L3514 2014
| |
| 4280 369*2^1240510+1 373434 L2905 2012
| |
| 4281 3341*2^1240459+1 373419 L2038 2014
| |
| 4282 8415*2^1240437+1 373413 L2117 2014
| |
| 4283 5265*2^1240387+1 373398 L3262 2014
| |
| 4284 2413*2^1240386+1 373397 L2413 2014
| |
| 4285 6157*2^1240310+1 373375 L3262 2014
| |
| 4286 8789*2^1240255+1 373358 L3262 2014
| |
| 4287 159*2^1240229-1 373349 L1959 2011
| |
| 4288 21*2^1240067+1 373299 g279 2004 (**)
| |
| 4289 425*2^1240016-1 373285 L1817 2013
| |
| 4290 7797*2^1239955+1 373268 L1492 2014
| |
| 4291 8579*10^373260-1 373264 p265 2010
| |
| 4292 1973*2^1239877+1 373244 L3786 2014
| |
| 4293 315*2^1239735+1 373200 L2907 2012
| |
| 4294 8577*2^1239675+1 373184 L3199 2014
| |
| 4295 1345*2^1239661-1 373179 L1828 2012
| |
| 4296 3303*2^1239656+1 373178 L3783 2014
| |
| 4297 6783*2^1239565+1 373151 L3895 2014
| |
| 4298 8541*2^1239529+1 373140 L3262 2014
| |
| 4299 435*2^1239504+1 373131 L2805 2012
| |
| 4300 9105*2^1239490+1 373128 L1741 2014
| |
| 4301 2709*2^1239449+1 373115 L3262 2014
| |
| 4302 6225*2^1239157+1 373028 L3262 2014
| |
| 4303 9039*2^1239126+1 373019 L2981 2014
| |
| 4304 2172*117^180355+1 373011 p376 2014
| |
| 4305 1357*2^1238926+1 372958 L3780 2014
| |
| 4306 2783*2^1238749+1 372905 L3781 2014
| |
| 4307 2205*2^1238743+1 372903 L3262 2014
| |
| 4308 1775*2^1238739+1 372901 L3262 2014
| |
| 4309 2115*2^1238672+1 372881 L3262 2014
| |
| 4310 7979*2^1238639+1 372872 L3423 2014
| |
| 4311 4455*2^1238519+1 372836 L1733 2014
| |
| 4312 4053*2^1238193+1 372737 L1733 2014
| |
| 4313 3997*2^1238180+1 372733 L2413 2014
| |
| 4314 7063*2^1238138+1 372721 L3699 2014
| |
| 4315 3203*2^1238045+1 372693 L2981 2014
| |
| 4316 5187*2^1238008+1 372682 L3262 2014
| |
| 4317 4497*2^1237934+1 372659 L1741 2014
| |
| 4318 2595*2^1237917+1 372654 L3775 2014
| |
| 4319 4027*2^1237866+1 372639 L1741 2014
| |
| 4320 5439*2^1237786+1 372615 L3262 2014
| |
| 4321 7341*2^1237761+1 372608 L1137 2014
| |
| 4322 4957*2^1237734+1 372599 L3262 2014
| |
| 4323 3415*2^1237724+1 372596 L1741 2014
| |
| 4324 1147*2^1237642+1 372571 L2659 2011
| |
| 4325 1575*2^1237448+1 372513 L2520 2014
| |
| 4326 4075*2^1237398+1 372498 L2038 2014
| |
| 4327 6269*2^1237377+1 372492 L1741 2014
| |
| 4328 6207*2^1237356+1 372486 L1741 2014
| |
| 4329 7297*2^1237310+1 372472 L3262 2014
| |
| 4330 7165*2^1237210+1 372442 L3699 2014
| |
| 4331 9753*2^1237132+1 372418 L3262 2014
| |
| 4332 8325*2^1236968+1 372369 L3262 2014
| |
| 4333 5115*2^1236900+1 372348 L1741 2014
| |
| 4334 7217*2^1236831+1 372328 L1745 2014
| |
| 4335 1113*2^1236797+1 372317 L2829 2011
| |
| 4336 5711*2^1236551+1 372243 L2823 2014
| |
| 4337 3401*2^1236517+1 372233 L2520 2014
| |
| 4338 3957*2^1236514+1 372232 L2038 2014
| |
| 4339 8171*2^1236507+1 372230 L2626 2014
| |
| 4340 7617*2^1236482+1 372223 L3171 2014
| |
| 4341 9257*2^1236431+1 372207 L3812 2014
| |
| 4342 7345*2^1236280+1 372162 L3048 2014
| |
| 4343 7055*2^1236229+1 372146 L3262 2014
| |
| 4344 8819*2^1236025+1 372085 L3588 2014
| |
| 4345 6373*2^1236006+1 372079 L2520 2014
| |
| 4346 4635*2^1235976+1 372070 L3699 2014
| |
| 4347 5673*2^1235958+1 372065 L2279 2014
| |
| 4348 8159*2^1235875+1 372040 L2048 2014
| |
| 4349 7081*2^1235808+1 372020 L2866 2014
| |
| 4350 9309*2^1235626+1 371965 L2117 2014
| |
| 4351 3515*2^1235623+1 371964 L3206 2014
| |
| 4352 8715*2^1235606+1 371959 L3760 2014
| |
| 4353 6259*2^1235586+1 371953 L3773 2014
| |
| 4354 8837*2^1235559+1 371945 L1753 2014
| |
| 4355 1677*2^1235543+1 371939 L3158 2014
| |
| 4356 6461*2^1235539+1 371939 L2532 2014
| |
| 4357 165*2^1235490-1 371922 L2101 2011
| |
| 4358 2737*2^1235408+1 371899 L2549 2014
| |
| 4359 43*2^1235298+1 371864 g279 2006 (**)
| |
| 4360 1707*2^1235207+1 371838 L3768 2014
| |
| 4361 6481*2^1235200+1 371837 L1741 2014
| |
| 4362 6171*2^1235161+1 371825 L3766 2014
| |
| 4363 577*2^1235058+1 371793 L2804 2011
| |
| 4364 615*2^1235039-1 371787 L1978 2012
| |
| 4365 259738*3^779214+1 371785 L2777 2011
| |
| Generalized Cullen (**)
| |
| 4366 8495*2^1234841+1 371729 L3262 2014
| |
| 4367 185*2^1234730-1 371694 L1959 2011
| |
| 4368 19861029*2^1234572-1 371651 L895 2012
| |
| 4369 6009*2^1234511+1 371629 L3671 2014
| |
| 4370 4163*2^1234360-1 371584 L1959 2013
| |
| 4371 8229*2^1234302+1 371566 L3588 2014
| |
| 4372 2979*2^1234303+1 371566 L2549 2014
| |
| 4373 7601*2^1234057+1 371493 L2826 2014
| |
| 4374 595*2^1234025-1 371482 L1817 2013
| |
| 4375 2129*2^1233779+1 371408 L3412 2013
| |
| 4376 13483*2^1233619-1 371361 L2055 2011
| |
| 4377 705*2^1233563-1 371343 L2257 2012
| |
| 4378 6147*2^1233486+1 371321 L2549 2014
| |
| 4379 531*2^1233440+1 371306 L2803 2011
| |
| Divides GF(1233439,5)
| |
| 4380 1677*2^1233336+1 371275 L3548 2013
| |
| 4381 1785*2^1233319+1 371270 L1733 2013
| |
| 4382 145*2^1233286+1 371259 L1751 2011
| |
| 4383 1045*2^1233270+1 371255 L2659 2011
| |
| 4384 9343*2^1233256+1 371252 L3588 2014
| |
| 4385 2875*2^1233256+1 371251 L2520 2013
| |
| 4386 2*170^166428-1 371210 L2054 2011
| |
| 4387 1935*2^1233015+1 371178 L3548 2013
| |
| 4388 9727*2^1232994+1 371173 L3760 2014
| |
| 4389 9241*2^1232956+1 371161 L2873 2014
| |
| 4390 7385*2^1232891+1 371142 L3294 2014
| |
| 4391 5007*2^1232886+1 371140 L1741 2014
| |
| 4392 7011*2^1232784+1 371109 L3430 2014
| |
| 4393 9843*2^1232722+1 371091 L3262 2014
| |
| 4394 4733*2^1232689+1 371081 L3168 2014
| |
| 4395 1067*2^1232654-1 371069 L1828 2012
| |
| 4396 4289*2^1232571+1 371045 L2520 2014
| |
| 4397 711*2^1232535+1 371033 L1303 2011
| |
| 4398 5643*2^1232518+1 371029 L3034 2014
| |
| 4399 9621*2^1232501+1 371024 L1741 2014
| |
| 4400 569*2^1232424-1 371000 L1817 2013
| |
| 4401 987*2^1232387+1 370989 L2619 2011
| |
| 4402 9923*2^1232333+1 370974 L2327 2014
| |
| 4403 5849*2^1232295+1 370962 L3423 2014
| |
| 4404 2115*2^1232294+1 370961 L3713 2013
| |
| 4405 8795*2^1232255+1 370950 L3262 2014
| |
| 4406 3*2^1232255-1 370947 L30 2004
| |
| 4407 6899*2^1232171+1 370925 L2981 2014
| |
| 4408 1157*2^1231906-1 370844 L1828 2012
| |
| 4409 8143*2^1231664+1 370772 L3588 2014
| |
| 4410 51*2^1231665-1 370770 L384 2010
| |
| 4411 957*2^1231656+1 370769 L1741 2011
| |
| 4412 2475*2^1231584+1 370748 L3548 2013
| |
| 4413 5871*2^1231561+1 370741 L2549 2014
| |
| 4414 8675*2^1231443+1 370706 L3262 2014
| |
| 4415 5763*2^1231376+1 370685 L1741 2014
| |
| 4416 1357*2^1231324+1 370669 L3548 2013
| |
| 4417 4251*2^1231307+1 370664 L3294 2014
| |
| 4418 7761*2^1231228+1 370641 L3294 2014
| |
| 4419 3411*2^1231211+1 370635 L1741 2013
| |
| 4420 1119*2^1231192-1 370629 L1828 2012
| |
| 4421 2421*2^1231103+1 370603 L3548 2013
| |
| 4422 8581*2^1231084+1 370598 L3262 2014
| |
| 4423 1395*2^1230933+1 370551 L3262 2013
| |
| 4424 9325*2^1230850+1 370527 L3588 2014
| |
| 4425 2625*2^1230805+1 370513 L1139 2013
| |
| 4426 9585*2^1230790+1 370509 L3810 2014
| |
| 4427 1979*2^1230765+1 370501 L2837 2013
| |
| 4428 4125*2^1230651+1 370467 L3262 2014
| |
| 4429 4223*2^1230633+1 370462 L1741 2014
| |
| 4430 1587*2^1230628+1 370460 L3548 2013
| |
| 4431 3179*2^1230431+1 370401 L3548 2013
| |
| 4432 3399*2^1230309+1 370364 L3548 2013
| |
| 4433 7863*2^1230300+1 370362 L3294 2014
| |
| 4434 8823*2^1230161+1 370320 L3808 2014
| |
| 4435 3411*2^1230152+1 370317 L3726 2013
| |
| 4436 1129*2^1230141-1 370313 L1828 2012
| |
| 4437 7817*2^1229839+1 370223 L2322 2014
| |
| 4438 7813*2^1229788+1 370207 L2981 2014
| |
| 4439 2293*2^1229788+1 370207 L2831 2013
| |
| 4440 1075*2^1229708+1 370183 L2522 2011
| |
| 4441 8153*2^1229665+1 370170 L3131 2014
| |
| 4442 15*2^1229600+1 370148 g279 2006 (**)
| |
| 4443 19581121*2^1229561-1 370143 p49 2008
| |
| 4444 4303*2^1229412+1 370094 L1745 2014
| |
| 4445 513*2^1229391-1 370087 L2047 2013
| |
| 4446 4603*2^1229378+1 370084 L2549 2014
| |
| 4447 6351*2^1229319+1 370066 L3755 2014
| |
| 4448 879*2^1229303-1 370061 L1817 2012
| |
| 4449 7481*2^1229203+1 370031 L3755 2014
| |
| 4450 5965*2^1229186+1 370026 L1745 2014
| |
| 4451 6025*2^1229148+1 370015 L3695 2014
| |
| 4452 9677*2^1229147+1 370015 L2038 2014
| |
| 4453 8461*2^1229080+1 369994 L3262 2014
| |
| 4454 9215*2^1228901+1 369941 L2126 2014
| |
| 4455 9207*2^1228867+1 369930 L3813 2014
| |
| 4456 7119*2^1228866+1 369930 L3658 2014
| |
| 4457 3735*2^1228827+1 369918 L2070 2013
| |
| 4458 9627*2^1228806+1 369912 L1823 2014
| |
| 4459 6581*2^1228805+1 369911 L3763 2014
| |
| 4460 440846^65536+1 369904 GC1 2002 Generalized Fermat
| |
| 4461 349*2^1228715-1 369883 L579 2010
| |
| 4462 1315*2^1228613-1 369853 L1828 2012
| |
| 4463 613*2^1228474+1 369811 L2659 2011
| |
| 4464 631*2^1228421-1 369795 L2257 2012
| |
| 4465 8101*2^1228384+1 369785 L3262 2014
| |
| 4466 44*383^143148-1 369782 L2012 2014
| |
| 4467 1923*2^1228357+1 369776 L2719 2013
| |
| 4468 7475*2^1228307+1 369762 L376 2014
| |
| 4469 889*2^1228285-1 369754 L2257 2012
| |
| 4470 9701*2^1228243+1 369742 L3588 2014
| |
| 4471 9999998*10^369705-1 369712 L1958 2014 Near-repdigit
| |
| 4472 6895*2^1228014+1 369673 L1477 2014
| |
| 4473 3555*2^1227976+1 369662 L3548 2013
| |
| 4474 9429*2^1227926+1 369647 L3806 2014
| |
| 4475 4099*2^1227794+1 369607 L3755 2014
| |
| 4476 1629*2^1227739+1 369590 L3548 2013
| |
| 4477 1159*2^1227650+1 369563 L1935 2011
| |
| 4478 4931*2^1227525+1 369526 L3755 2014
| |
| 4479 6639*2^1227507+1 369521 L3760 2014
| |
| 4480 1307*2^1227482-1 369513 L1828 2012
| |
| 4481 593*2^1227476-1 369510 L1817 2013
| |
| 4482 3655*2^1227466+1 369508 L2809 2013
| |
| 4483 4785*2^1227416+1 369493 L3755 2014
| |
| 4484 1289*2^1227403+1 369489 L1741 2013
| |
| 4485 5863*2^1227386+1 369484 L1741 2014
| |
| 4486 2965*2^1227314+1 369462 L2413 2013
| |
| 4487 9167*2^1227311+1 369462 L2981 2014
| |
| 4488 757*2^1227234+1 369438 L1210 2011
| |
| 4489 1559*2^1227229+1 369436 L3548 2013
| |
| 4490 5019*2^1227205+1 369430 L3755 2014
| |
| 4491 5565*2^1227099+1 369398 L3759 2014
| |
| 4492 6213*2^1226950+1 369353 L1204 2014
| |
| 4493 1085*2^1226897+1 369336 L2655 2011
| |
| 4494 573*2^1226854-1 369323 L1817 2013
| |
| 4495 2625*2^1226803+1 369308 L1745 2013
| |
| 4496 9411*2^1226739+1 369290 L1741 2014
| |
| 4497 5579*2^1226737+1 369289 L2520 2014
| |
| 4498 5233*2^1226700+1 369278 L3514 2014
| |
| 4499 9519*2^1226566+1 369238 L3262 2014
| |
| 4500 919*2^1226562+1 369235 L2797 2011
| |
| 4501 5609*2^1226531+1 369227 L3262 2014
| |
| 4502 4257*2^1226423+1 369194 L2886 2014
| |
| 4503 7603*2^1226328+1 369166 L2549 2014
| |
| 4504 2145*2^1226291-1 369154 L1862 2013
| |
| 4505 287*2^1226144-1 369109 p279 2010
| |
| 4506 6323*2^1226093+1 369095 L1741 2014
| |
| 4507 6555*2^1225770-1 368998 L2484 2014
| |
| 4508 8185*2^1225738+1 368988 L2279 2014
| |
| 4509 9485*2^1225669+1 368968 L3262 2014
| |
| 4510 4799*2^1225665+1 368966 L3755 2014
| |
| 4511 8589*2^1225637+1 368958 L3262 2014
| |
| 4512 1701*2^1225611+1 368949 L3548 2013
| |
| 4513 5295*2^1225536+1 368927 L3262 2014
| |
| 4514 6825*2^1225488+1 368913 L3755 2014
| |
| 4515 5139*2^1225425+1 368894 L3758 2014
| |
| 4516 86*123^176510-1 368892 L1471 2012
| |
| 4517 9221*2^1225369+1 368877 L3588 2014
| |
| 4518 8593*2^1225272+1 368848 L3262 2014
| |
| 4519 3275*2^1225145+1 368809 L1186 2013
| |
| 4520 123*2^1225115-1 368799 L1959 2011
| |
| 4521 6403*2^1225086+1 368792 L3753 2014
| |
| 4522 5649*2^1225083+1 368791 L3757 2014
| |
| 4523 4421*2^1225063+1 368785 L2626 2014
| |
| 4524 6357*2^1224964+1 368755 L3760 2014
| |
| 4525 3499*2^1224890+1 368733 L1745 2013
| |
| 4526 2375*2^1224889+1 368732 L3548 2013
| |
| 4527 8331405*2^1224804-1 368710 L260 2010
| |
| 4528 5925*2^1224804+1 368707 L1130 2014
| |
| 4529 3471*2^1224763+1 368694 L3548 2013
| |
| Divides GF(1224758,6)
| |
| 4530 6851*2^1224703+1 368677 L1741 2014
| |
| 4531 4185*2^1224663-1 368664 L1959 2013
| |
| 4532 5051*2^1224601+1 368646 L3262 2013
| |
| 4533 2163*2^1224400+1 368585 L3035 2013
| |
| 4534 9537*2^1224332+1 368565 L3803 2014
| |
| 4535 4005*2^1224094+1 368493 L3744 2013
| |
| 4536 179*2^1224019+1 368469 L2835 2012
| |
| 4537 1023*2^1223814+1 368408 L2117 2011
| |
| 4538 515*2^1223805+1 368405 L2322 2011
| |
| 4539 9265*2^1223786+1 368401 L1130 2014
| |
| 4540 9645*2^1223623+1 368352 L3760 2014
| |
| 4541 7893*2^1223613+1 368349 L3755 2013
| |
| 4542 849*2^1223571-1 368335 L1815 2012
| |
| 4543 6517*2^1223520+1 368321 L3234 2013
| |
| 4544 9427*2^1223460+1 368303 L1204 2014
| |
| 4545 9803*2^1223453+1 368301 L3545 2014
| |
| 4546 1653*2^1223260+1 368242 L3262 2013
| |
| 4547 3243*2^1223024+1 368171 L3712 2013
| |
| 4548 3441*2^1222996+1 368163 L3262 2013
| |
| 4549 4603*2^1222908+1 368136 L3668 2013
| |
| 4550 3907*2^1222828+1 368112 L3713 2013
| |
| 4551 1929*2^1222751+1 368089 L3548 2013
| |
| 4552 8733*2^1222624+1 368051 L3262 2014
| |
| 4553 1027*2^1222565-1 368032 L1828 2012
| |
| 4554 4169*2^1222495+1 368012 L2100 2013
| |
| 4555 3729*2^1222462+1 368002 L3548 2013
| |
| 4556 4103*2^1222417+1 367988 L2413 2013
| |
| 4557 141*2^1222421+1 367988 L1751 2011 (**)
| |
| 4558 2955*2^1222267+1 367943 L1204 2013
| |
| 4559 6915*2^1222132+1 367903 L2549 2013
| |
| 4560 7209*2^1221977+1 367856 L2048 2014
| |
| 4561 3129*2^1221955+1 367849 L3262 2013
| |
| 4562 1027*2^1221942+1 367845 L2802 2011
| |
| 4563 7277*2^1221923+1 367840 L3753 2013
| |
| 4564 4135*2^1221887-1 367829 L1959 2013
| |
| 4565 4477*2^1221814+1 367807 L3698 2013
| |
| 4566 4107*2^1221754+1 367789 L2532 2013
| |
| 4567 8433*2^1221721+1 367779 L3262 2014
| |
| 4568 8483*2^1221641+1 367755 L1741 2014
| |
| 4569 4175*2^1221640-1 367754 L1959 2013
| |
| 4570 5439*2^1221406+1 367684 L2840 2014
| |
| 4571 2205*2^1221369+1 367673 L3548 2013
| |
| 4572 4249*2^1221214+1 367626 L3750 2013
| |
| 4573 351*2^1221009+1 367563 L2861 2012
| |
| 4574 8071*2^1220896+1 367531 L2626 2014
| |
| 4575 6501*2^1220856+1 367519 L3171 2013
| |
| 4576 6461*2^1220717+1 367477 L1745 2013
| |
| 4577 4113*2^1220636+1 367452 L2066 2013
| |
| 4578 7261*2^1220572+1 367433 L2413 2013
| |
| 4579 9133*2^1220526+1 367419 L3262 2014
| |
| 4580 5473*2^1220524+1 367419 L2594 2013
| |
| 4581 2893*2^1220512+1 367415 L3262 2013
| |
| 4582 9847*2^1220430+1 367391 L2823 2014
| |
| 4583 107*2^1220391+1 367377 L2873 2012
| |
| 4584 1183*2^1220323-1 367357 L1828 2012
| |
| 4585 128552*5^525537+1 367340 p292 2010
| |
| 4586 429*2^1220185+1 367315 L1158 2012
| |
| 4587 5139*2^1220067+1 367281 L3586 2013
| |
| 4588 1541*2^1220067+1 367280 L3709 2013
| |
| 4589 1395*2^1220066+1 367280 L3548 2013
| |
| 4590 3527*2^1220035+1 367271 L3548 2013
| |
| 4591 913*2^1220010+1 367263 L2801 2011
| |
| 4592 5961*2^1220007+1 367263 L2626 2013
| |
| 4593 5481*2^1219949+1 367245 L3727 2013
| |
| 4594 8619*2^1219829+1 367210 L3262 2014
| |
| 4595 8897*2^1219795+1 367199 L3262 2014
| |
| 4596 79916753563828279896266938611356192810163128144777193765*2^1219621+1
| |
| 367199 p342 2012
| |
| 4597 6165*2^1219740-1 367183 L1828 2014
| |
| 4598 2725*2^1219638+1 367152 L3548 2013
| |
| 4599 1277*2^1219524-1 367117 L1828 2012
| |
| 4600 827*2^1219466-1 367099 L1815 2012
| |
| 4601 6969*2^1219439+1 367092 L3719 2013
| |
| 4602 183*2^1219415-1 367083 L2055 2011
| |
| 4603 7799*2^1219387+1 367076 L2413 2013
| |
| 4604 177482*117^177482+1 367072 g407 2008 Generalized Cullen
| |
| 4605 583*2^1219350+1 367064 L2800 2011
| |
| 4606 2085*2^1219265+1 367039 L3548 2013
| |
| 4607 4083*2^1219134-1 367000 L1959 2013
| |
| 4608 1305*2^1219127-1 366997 L1828 2012
| |
| 4609 7789*2^1219102+1 366991 L2413 2013
| |
| 4610 3747*2^1219099+1 366989 L1741 2013
| |
| 4611 4931*2^1219095+1 366988 L2520 2013
| |
| 4612 1403*2^1219065+1 366979 L3548 2013
| |
| 4613 122*18^292318+1 366941 p231 2009
| |
| 4614 8303*2^1218925+1 366937 L3262 2014
| |
| 4615 2573*2^1218857+1 366916 L3262 2013
| |
| 4616 3579*2^1218849+1 366914 L3271 2013
| |
| 4617 8049*2^1218758+1 366887 L1186 2014
| |
| 4618 4767*2^1218758+1 366887 L3743 2013
| |
| 4619 7083*2^1218653+1 366855 L3752 2013
| |
| 4620 9885*2^1218599+1 366839 L3588 2014
| |
| 4621 621*2^1218520+1 366814 L2085 2011
| |
| 4622 315*2^1218433+1 366788 L1568 2011
| |
| 4623 3005*2^1218417+1 366784 L2840 2013
| |
| 4624 8977*2^1218384+1 366775 L3797 2014
| |
| 4625 8969*2^1218335+1 366760 L3262 2014
| |
| 4626 174*1021^121880-1 366743 L2054 2011
| |
| 4627 6687*2^1218239+1 366731 L1741 2013
| |
| 4628 347*2^1218211+1 366721 L2085 2012
| |
| 4629 1401*2^1218207+1 366720 L3548 2013
| |
| 4630 3899*2^1218163+1 366708 L2413 2013
| |
| 4631 4179*2^1218144-1 366702 L1959 2013
| |
| 4632 5441*2^1218025+1 366666 L3748 2013
| |
| 4633 1599*2^1217874+1 366620 L3548 2013
| |
| 4634 7847*2^1217855+1 366615 L3271 2013
| |
| 4635 6759*2^1217767+1 366589 L3262 2013
| |
| 4636 8281*2^1217616+1 366543 L2521 2014 Generalized Fermat
| |
| 4637 3371*2^1217403+1 366479 L3548 2013
| |
| 4638 3177*2^1217314+1 366452 L3548 2013
| |
| 4639 1515*2^1217300+1 366447 L3548 2013
| |
| 4640 4325*2^1217149+1 366402 L3131 2014
| |
| 4641 9375*2^1217053+1 366374 L2125 2014
| |
| 4642 6495*2^1216904+1 366329 L3742 2013
| |
| 4643 9057*2^1216739+1 366279 L3262 2014
| |
| 4644 9375*2^1216722+1 366274 L2823 2014
| |
| 4645 8463*2^1216481+1 366202 L3262 2014
| |
| 4646 997*2^1216484+1 366202 L2539 2011
| |
| 4647 8249*2^1216389+1 366174 L3760 2014
| |
| 4648 6743*2^1216377+1 366170 L1745 2013
| |
| 4649 2125*2^1216360+1 366165 L3262 2013
| |
| 4650 2671*2^1216356+1 366164 L1741 2013
| |
| 4651 7905*2^1216342+1 366160 L3673 2013
| |
| 4652 8049*2^1216331+1 366157 L3588 2014
| |
| 4653 8795*2^1216257+1 366134 L2066 2014
| |
| 4654 2061*2^1216253-1 366132 L840 2013
| |
| 4655 563*2^1216134-1 366096 L1817 2013
| |
| 4656 1363*2^1216078+1 366080 L3695 2013
| |
| 4657 553*2^1216046+1 366070 L2413 2011
| |
| 4658 9581*2^1215819+1 366002 L2125 2014
| |
| 4659 6165*2^1215466+1 365896 L3262 2013
| |
| 4660 1215*2^1215357+1 365862 L3548 2013
| |
| 4661 153*2^1215327-1 365853 L2055 2011
| |
| 4662 843301#-1 365851 p302 2010 Primorial (**)
| |
| 4663 3235*2^1215236+1 365826 L1379 2013
| |
| 4664 8047*2^1215234+1 365826 L3262 2014
| |
| 4665 1151*2^1215135+1 365796 L2779 2011
| |
| 4666 1305*2^1215064-1 365774 L1828 2012
| |
| 4667 8173*2^1215036+1 365767 L3798 2014
| |
| 4668 8457*2^1214776+1 365688 L1456 2014
| |
| 4669 4375*2^1214406+1 365577 L1761 2013
| |
| 4670 6321*2^1214224+1 365522 L3171 2013
| |
| 4671 3731*2^1214219+1 365520 L3548 2013
| |
| 4672 3579*2^1214206+1 365516 L1745 2013
| |
| 4673 1367*2^1214091+1 365481 L3548 2013
| |
| 4674 9237*2^1214046+1 365469 L2125 2014
| |
| 4675 143*2^1214022-1 365460 L1828 2012
| |
| 4676 153*2^1214002+1 365454 L1751 2011
| |
| 4677 9555*2^1213981+1 365449 L3790 2014
| |
| 4678 9541*2^1213964+1 365444 L2790 2014
| |
| 4679 771*2^1213789-1 365390 L1815 2012
| |
| 4680 8477*2^1213783+1 365390 L1745 2014
| |
| 4681 5445*2^1213625+1 365342 L2831 2013
| |
| 4682 7611*2^1213584+1 365330 L3732 2013
| |
| 4683 7673*2^1213489+1 365301 L2520 2013
| |
| 4684 9797*2^1213367+1 365264 L2626 2014
| |
| 4685 9321*2^1213356+1 365261 L3807 2014
| |
| 4686 4017*2^1213348+1 365258 L3514 2013
| |
| 4687 3835*2^1213336+1 365255 L1741 2013
| |
| 4688 1127*2^1213307+1 365245 L2799 2011
| |
| 4689 9021*2^1213297+1 365243 L3806 2014
| |
| 4690 4095*2^1213247-1 365228 L1959 2013
| |
| 4691 6127*2^1213206+1 365216 L3717 2013
| |
| 4692 5535*2^1213120-1 365190 L1828 2014
| |
| 4693 4905*2^1212915+1 365128 L1455 2013
| |
| 4694 4947*2^1212870+1 365114 L2715 2013
| |
| 4695 7557*2^1212863+1 365113 L3762 2014
| |
| 4696 4755*2^1212810+1 365096 L2117 2013
| |
| 4697 6587*2^1212795+1 365092 L1741 2013
| |
| 4698 1051*2^1212772+1 365084 L2785 2011
| |
| 4699 3989*2^1212629+1 365042 L3035 2013
| |
| 4700 2339*2^1212599+1 365033 L1741 2013
| |
| 4701 5505*2^1212579+1 365027 L1741 2013
| |
| 4702 1593*2^1212385+1 364968 L3548 2013
| |
| 4703 4221*2^1212344+1 364956 L2038 2013
| |
| 4704 883*2^1212322+1 364949 L2796 2011
| |
| 4705 3645*2^1212210-1 364916 L3345 2014
| |
| 4706 2197*2^1212176+1 364905 L3548 2013
| |
| 4707 8241*2^1212157+1 364900 L3262 2014
| |
| 4708 1121*2^1212101+1 364882 L2797 2011
| |
| 4709 8713*2^1212070+1 364874 L3262 2014
| |
| 4710 8257*2^1211980+1 364847 L3262 2014
| |
| 4711 3707*2^1211959+1 364840 L1741 2013
| |
| 4712 9365*2^1211945+1 364836 L2038 2014
| |
| 4713 9641*2^1211889+1 364819 L3199 2014
| |
| 4714 99*2^1211757+1 364778 L1446 2011
| |
| Divides GF(1211755,5)
| |
| 4715 3947*2^1211707+1 364764 L3714 2013
| |
| 4716 7407*2^1211486+1 364698 L2413 2013
| |
| 4717 25*2^1211488+1 364696 g279 2005
| |
| Generalized Fermat, divides GF(1211487,12)
| |
| 4718 595*2^1211446+1 364685 L2551 2011
| |
| 4719 7349*2^1211423+1 364679 L2413 2013
| |
| 4720 1701*2^1211385+1 364667 L2831 2013
| |
| 4721 4075*2^1211364+1 364661 L2626 2013
| |
| 4722 5733*2^1211333+1 364652 L3728 2013 (**)
| |
| 4723 4031*2^1211274-1 364634 L1959 2013
| |
| 4724 5649*2^1211209+1 364614 L3262 2013
| |
| 4725 2085*2^1211126-1 364589 L840 2013
| |
| 4726 9*10^364521-1 364522 p297 2010 Near-repdigit
| |
| 4727 1285*2^1210478+1 364394 L3707 2013
| |
| 4728 8527*2^1210446+1 364385 L3796 2014
| |
| 4729 6381*2^1210317+1 364346 L2826 2013
| |
| 4730 6315*2^1210286+1 364337 L1379 2013
| |
| 4731 117*2^1210282-1 364334 L2055 2011
| |
| 4732 5889*2^1210238+1 364322 L1741 2013
| |
| 4733 2945*2^1210165+1 364300 L3035 2013
| |
| 4734 108045*2^1210075-1 364274 L466 2012
| |
| 4735 2415*2^1209888+1 364216 L2520 2013
| |
| 4736 7827*2^1209792+1 364188 L2327 2013
| |
| 4737 1863*2^1209781+1 364184 L1957 2013
| |
| 4738 9935*2^1209757+1 364178 L2997 2014
| |
| 4739 707*2^1209654-1 364145 L1815 2012
| |
| 4740 1615*2^1209570+1 364121 L1957 2013
| |
| 4741 181*2^1209572+1 364120 L2904 2011
| |
| 4742 1365*2^1209522+1 364106 L1134 2012
| |
| 4743 369*2^1209435+1 364079 L1745 2011
| |
| 4744 403*2^1209326+1 364047 L2903 2011
| |
| 4745 951*2^1209290-1 364036 L1815 2012
| |
| 4746 333*2^1209174-1 364001 L1830 2010
| |
| 4747 273*2^1209170-1 363999 L2338 2012
| |
| 4748 9935*2^1209103+1 363981 L2080 2014
| |
| 4749 5387*2^1209099+1 363979 L3262 2013
| |
| 4750 9457*2^1209070+1 363971 L3262 2014
| |
| 4751 357868^65536+1 363969 g266 2003 Generalized Fermat
| |
| 4752 1687*2^1209028+1 363957 L2520 2013
| |
| 4753 2013*2^1209020-1 363955 L3345 2014
| |
| 4754 5635*2^1208966+1 363939 L3262 2013
| |
| 4755 2415*2^1208963-1 363938 L2074 2013
| |
| 4756 5871*2^1208961+1 363938 L1741 2013
| |
| 4757 1947*2^1208896+1 363918 L3483 2013
| |
| 4758 703*2^1208892+1 363916 L2100 2011
| |
| 4759 1035*2^1208884-1 363914 L1828 2012
| |
| 4760 4295*2^1208815+1 363894 L3725 2013
| |
| 4761 1207*2^1208688+1 363855 L3271 2013
| |
| 4762 7161*2^1208613+1 363833 L3262 2013
| |
| 4763 4773*2^1208576+1 363822 L2901 2013
| |
| 4764 8469*2^1208534+1 363809 L3588 2014
| |
| 4765 4453*2^1208534+1 363809 L3727 2013
| |
| 4766 8943*2^1208405+1 363771 L3262 2014
| |
| 4767 1051*2^1208312+1 363742 L2659 2011
| |
| 4768 241*2^1208307-1 363740 L2338 2012
| |
| 4769 249*2^1208142+1 363690 L1158 2011
| |
| 4770 7035*2^1208088+1 363675 L3724 2013
| |
| 4771 7785*2^1208037+1 363660 L2322 2013
| |
| 4772 2337*2^1208018+1 363654 L3548 2013
| |
| 4773 3007*2^1207962+1 363637 L3548 2013
| |
| 4774 7001*2^1207849+1 363603 L3246 2013
| |
| 4775 6741*2^1207844+1 363602 L2520 2013
| |
| 4776 835*2^1207821-1 363594 L1815 2012
| |
| 4777 8445*2^1207799+1 363588 L1503 2014
| |
| 4778 2173*2^1207728+1 363566 L3548 2013
| |
| 4779 5315*2^1207551+1 363513 L2131 2013
| |
| 4780 5259*2^1207421+1 363474 L2826 2013
| |
| 4781 155*2^1207424-1 363474 L1959 2011
| |
| 4782 165*2^1207393+1 363464 L2884 2012 (**)
| |
| 4783 2245*2^1207338+1 363449 L3548 2013
| |
| 4784 209*2^1207276-1 363429 L2338 2011
| |
| 4785 8425*2^1207184+1 363403 L3262 2014
| |
| 4786 2699*2^1207171+1 363399 L3548 2013
| |
| 4787 8967*2^1207111+1 363381 L3262 2014
| |
| 4788 6553*2^1207094+1 363376 L3469 2013
| |
| 4789 6063*2^1207026+1 363355 L3262 2013
| |
| 4790 4137*2^1206972+1 363339 L3199 2013
| |
| 4791 2713*2^1206966+1 363337 L2454 2013
| |
| 4792 2783*2^1206929+1 363326 L3548 2013
| |
| 4793 8757*2^1206864+1 363307 L3588 2014
| |
| 4794 154962*221^154962-1 363297 L3269 2012 Generalized Woodall
| |
| 4795 2209*2^1206794+1 363285 L3035 2013 Generalized Fermat
| |
| 4796 6665*2^1206719+1 363263 L3695 2013
| |
| 4797 4957*2^1206582+1 363222 L3699 2013
| |
| 4798 7361*2^1206579+1 363221 L2705 2013
| |
| 4799 183916*5^519597-1 363188 p304 2010
| |
| 4800 2579*2^1206467+1 363187 L2700 2013
| |
| 4801 1815*2^1206355+1 363153 L2583 2013
| |
| 4802 69*2^1206353+1 363151 g246 2010
| |
| 4803 235*2^1206136+1 363086 L2516 2011
| |
| 4804 973*2^1206088+1 363072 L2085 2011
| |
| 4805 1097*2^1206076-1 363069 L1828 2012
| |
| 4806 8977*2^1205958+1 363034 L1741 2014
| |
| 4807 1119*2^1205879-1 363009 L1828 2012
| |
| 4808 2937*2^1205863+1 363005 L3548 2013
| |
| 4809 120585*2^1205851-1 363003 p260 2012
| |
| Generalized Woodall (**)
| |
| 4810 5595*2^1205852+1 363002 L3441 2013
| |
| 4811 9795*2^1205806+1 362988 L3262 2014
| |
| 4812 4887*2^1205562+1 362915 L3262 2013
| |
| 4813 8089*2^1205538+1 362908 L3755 2014
| |
| 4814 8999*2^1205533+1 362906 L3262 2014
| |
| 4815 5433*2^1205492+1 362893 L2675 2013
| |
| 4816 9125*2^1205479+1 362890 L2080 2014
| |
| 4817 429*2^1205440-1 362877 L1817 2013
| |
| 4818 1423*2^1205415-1 362870 L3887 2014
| |
| 4819 3015*2^1205331+1 362845 L3548 2013
| |
| 4820 3269*2^1205319+1 362841 L3548 2013
| |
| 4821 6855*2^1205215+1 362810 L2413 2013
| |
| 4822 921*2^1205199+1 362805 L2794 2011
| |
| 4823 2359*2^1205170+1 362796 L3702 2013
| |
| 4824 2*698^127558-1 362757 L2054 2011
| |
| 4825 1541*2^1204893+1 362713 L3500 2013
| |
| 4826 1463*2^1204789+1 362681 L3548 2013
| |
| 4827 9317*2^1204775+1 362678 L3588 2014
| |
| 4828 269*2^1204740-1 362666 L282 2010
| |
| 4829 6699*2^1204694+1 362653 L3548 2013
| |
| 4830 9933*2^1204658+1 362643 L3743 2014
| |
| 4831 7077*2^1204646+1 362639 L3262 2013
| |
| 4832 78*916^122431-1 362630 p355 2013
| |
| 4833 6981*2^1204555+1 362612 L3500 2013
| |
| 4834 4601*2^1204485+1 362590 L3548 2013 (**)
| |
| 4835 621*2^1204299+1 362533 L2793 2011
| |
| 4836 475*2^1204215-1 362508 L1817 2013
| |
| 4837 689*2^1204032-1 362453 L1815 2012
| |
| 4838 7309*2^1203982+1 362439 L1344 2013
| |
| 4839 9545*2^1203981+1 362439 L2080 2014
| |
| 4840 2^1203793-2^601897+1 362378 L192 2006
| |
| Gaussian Mersenne norm 37
| |
| 4841 861*2^1203625-1 362331 L251 2011
| |
| 4842 7959*2^1203598+1 362324 L3548 2013
| |
| 4843 3045*2^1203486+1 362289 L1745 2013
| |
| 4844 1035*2^1203377-1 362256 L1828 2012
| |
| 4845 2413*2^1203346+1 362247 L3711 2013
| |
| 4846 9349*2^1203278+1 362227 L3262 2014
| |
| 4847 7569*2^1203247+1 362218 L3717 2013
| |
| 4848 8467*2^1203080+1 362168 L3794 2014
| |
| 4849 7255*2^1203032+1 362153 L1130 2013
| |
| 4850 7557*2^1202959+1 362131 L2322 2013
| |
| 4851 1661*2^1202885+1 362108 L3548 2013
| |
| 4852 25*800^124713-1 362055 p355 2012
| |
| 4853 2691*2^1202613+1 362027 L3548 2013
| |
| 4854 945*2^1202538-1 362003 L1815 2012
| |
| 4855 8759*2^1202515+1 361998 L2066 2014
| |
| 4856 2085*2^1202408+1 361965 L3548 2013
| |
| 4857 3339*2^1202405+1 361964 L3548 2013
| |
| 4858 279*2^1202283-1 361926 L2338 2012
| |
| 4859 6747*2^1202218+1 361908 L3548 2013
| |
| 4860 2277*2^1202003+1 361843 L2322 2013
| |
| 4861 2511*2^1201983+1 361837 L3711 2013
| |
| 4862 5183*2^1201889+1 361809 L3721 2013
| |
| 4863 5453*2^1201853+1 361798 L3548 2013
| |
| 4864 537*2^1201791+1 361778 L2702 2011
| |
| 4865 4685*2^1201757+1 361769 L3548 2013
| |
| 4866 5385*2^1201653+1 361738 L1186 2013
| |
| 4867 927*2^1201644-1 361734 L1815 2012
| |
| 4868 4303*2^1201548+1 361706 L3548 2013
| |
| 4869 1605*2^1201511+1 361695 L3548 2013
| |
| 4870 4193*2^1201461+1 361680 L3435 2013
| |
| 4871 4875*2^1201242+1 361614 L1745 2013
| |
| 4872 2707*2^1201192+1 361599 L3548 2013
| |
| 4873 1107*2^1201166-1 361591 L1828 2012
| |
| 4874 8277*2^1201070+1 361563 L3262 2014
| |
| 4875 3*2^1201046-1 361552 L77 2004
| |
| 4876 8787*2^1201011+1 361545 L3262 2014
| |
| 4877 1323*2^1200980-1 361535 L1828 2012
| |
| 4878 545*2^1200769+1 361471 L1934 2011
| |
| 4879 6185*2^1200633+1 361431 L3548 2013
| |
| 4880 469*2^1200635-1 361430 L1817 2013
| |
| 4881 863*2^1200565+1 361410 L1533 2011
| |
| 4882 1881*2^1200532+1 361400 L3262 2013
| |
| 4883 9179*2^1200499+1 361391 L3297 2014
| |
| 4884 3909*2^1200477+1 361384 L1132 2013
| |
| 4885 8189*2^1200409+1 361364 L3262 2014
| |
| 4886 7807*2^1200404+1 361362 L3548 2013
| |
| 4887 6*272^148426-1 361355 L1471 2011
| |
| 4888 699*2^1200343+1 361343 L1303 2011
| |
| 4889 1467*2^1200198+1 361299 L3548 2013
| |
| 4890 6591*2^1200128+1 361279 L3262 2013
| |
| 4891 8635*2^1200118+1 361276 L3262 2014
| |
| 4892 6413*2^1200117+1 361276 L3548 2013
| |
| 4893 8019*2^1199942+1 361223 L1158 2013
| |
| 4894 183500*93^183500+1 361222 g157 2012 Generalized Cullen
| |
| 4895 502541*2^1199930-1 361221 L93 2004
| |
| 4896 2169*2^1199897+1 361209 L2520 2013
| |
| 4897 1153*2^1199835-1 361190 L1828 2012
| |
| 4898 5565*2^1199745+1 361163 L3548 2013
| |
| 4899 155*2^1199689+1 361145 L1751 2011 (**)
| |
| 4900 3651*2^1199635+1 361130 L3262 2013
| |
| 4901 2317*2^1199620+1 361125 L3548 2013
| |
| 4902 3073*2^1199602+1 361120 L3548 2013 (**)
| |
| 4903 5145*2^1199509+1 361092 L3049 2013
| |
| 4904 2611*2^1199467-1 361079 L2708 2011
| |
| 4905 3895*2^1199424+1 361067 L3548 2013
| |
| 4906 4179*2^1199409-1 361062 L1959 2013
| |
| 4907 9853*2^1199286+1 361026 L3699 2013
| |
| 4908 6855*2^1199276+1 361022 L3698 2013
| |
| 4909 4885*2^1199260+1 361017 L3700 2013
| |
| 4910 2707*2^1199212+1 361003 L1957 2013
| |
| 4911 9275*2^1199179+1 360993 L3548 2013
| |
| 4912 4021*2^1199103-1 360970 L1959 2013
| |
| 4913 3565*2^1199092+1 360967 L3362 2013
| |
| 4914 3703*2^1199010+1 360942 L1741 2013
| |
| 4915 2363*2^1198977+1 360932 L1130 2013
| |
| 4916 7723*2^1198934+1 360919 L3262 2013
| |
| 4917 943*2^1198931-1 360918 L1815 2012
| |
| 4918 7143*2^1198797+1 360878 L3548 2013
| |
| 4919 1221*2^1198713+1 360852 L3696 2013
| |
| 4920 2199*2^1198573+1 360810 L3526 2013
| |
| 4921 1011*2^1198498-1 360787 L1828 2012
| |
| 4922 8459*2^1198481+1 360783 L3699 2013
| |
| 4923 6759*2^1198450+1 360774 L3035 2013
| |
| 4924 3599*2^1198443+1 360771 L1741 2013
| |
| 4925 587*2^1198111+1 360671 L2620 2011
| |
| 4926 5029*2^1197990+1 360635 L2413 2013
| |
| 4927 4175*2^1197888-1 360604 L1959 2013
| |
| 4928 8601*2^1197844+1 360591 L2659 2013
| |
| 4929 8649*2^1197743+1 360561 L1492 2013
| |
| 4930 4451*2^1197727+1 360556 L1741 2013
| |
| 4931 5707*2^1197636+1 360529 L1204 2013
| |
| 4932 6411*2^1197487+1 360484 L3609 2013
| |
| 4933 2697*2^1197452+1 360473 L3705 2013
| |
| 4934 4551*2^1197356+1 360444 L3294 2013
| |
| 4935 6175*2^1197272+1 360419 L3696 2013
| |
| 4936 9999992*10^360403-1 360410 L1958 2011 Near-repdigit
| |
| 4937 8939*2^1197185+1 360393 L2981 2013
| |
| 4938 34693*2^1197131-1 360377 L2055 2011
| |
| 4939 10^360360-10^183037-1 360360 p374 2014 Near-repdigit
| |
| 4940 83*706^126486-1 360336 L1471 2011
| |
| 4941 9867*2^1196984+1 360333 L1204 2013
| |
| 4942 3201*2^1196967+1 360327 L3695 2013
| |
| 4943 1027*2^1196957-1 360323 L1828 2012
| |
| 4944 7737*2^1196900+1 360307 L3317 2013
| |
| 4945 1335*2^1196731-1 360256 L1828 2012
| |
| 4946 1029*2^1196674+1 360238 L1408 2011
| |
| 4947 4827*2^1196655+1 360233 L2520 2013
| |
| 4948 1549*2^1196654+1 360232 L3693 2013 (**)
| |
| 4949 163*2^1196434+1 360165 L1751 2011
| |
| 4950 1019*2^1196379+1 360149 L1513 2011
| |
| 4951 4809*2^1196371+1 360148 L3548 2013
| |
| 4952 7377*2^1196227+1 360105 L3548 2013
| |
| 4953 53542*5^515155-1 360083 p305 2010
| |
| 4954 9711*2^1196141+1 360079 L3294 2013
| |
| 4955 5335*2^1196128+1 360075 L1158 2013
| |
| 4956 7905*2^1196099+1 360066 L1158 2013
| |
| 4957 2767*2^1196080+1 360060 L3372 2013
| |
| 4958 7107*2^1195843+1 359989 L1204 2013
| |
| 4959 843*2^1195408-1 359857 L1815 2012
| |
| 4960 9753*2^1195376+1 359849 L2675 2013
| |
| 4961 2501*2^1195309+1 359828 L3117 2013
| |
| 4962 153222*223^153222-1 359818 L2777 2012 Generalized Woodall
| |
| 4963 1195203*2^1195203-1 359799 L124 2005 Woodall
| |
| 4964 9123*2^1195132+1 359775 L3548 2013
| |
| 4965 4005*2^1195016+1 359740 L3675 2013
| |
| 4966 7095*2^1194811+1 359678 L3548 2013
| |
| 4967 8889*2^1194721+1 359651 L2603 2013
| |
| 4968 3591*2^1194692+1 359642 L3141 2013
| |
| 4969 142223*2^1194492-1 359584 L3169 2012
| |
| 4970 3827*2^1194495+1 359583 L3548 2013
| |
| 4971 1355*2^1194487+1 359580 L3685 2013
| |
| 4972 6279*2^1194351+1 359540 L3548 2013
| |
| 4973 2615*2^1194279+1 359518 L3405 2013
| |
| 4974 193558*72^193558-1 359507 p357 2013 Generalized Woodall
| |
| 4975 1765*2^1194186+1 359490 L2735 2013
| |
| 4976 7573*2^1194172+1 359486 L1158 2013
| |
| 4977 5*2^1194164-1 359480 L478 2008
| |
| 4978 2349*2^1194134+1 359474 L1204 2013
| |
| 4979 2759*2^1194071+1 359455 L1158 2013
| |
| 4980 1075*2^1194063-1 359452 L1828 2012
| |
| 4981 1767*2^1194030+1 359443 L3173 2013
| |
| 4982 9399*2^1193977+1 359427 L3548 2013
| |
| 4983 5623*2^1193892+1 359402 L3895 2013
| |
| 4984 4895*2^1193889+1 359401 L2675 2013
| |
| 4985 873*2^1193802-1 359374 L1815 2012
| |
| 4986 93*10^359354-1 359356 L3735 2013 Near-repdigit
| |
| 4987 1275*2^1193685+1 359339 L3262 2013
| |
| 4988 3697*2^1193564+1 359303 L2826 2013
| |
| 4989 3639*2^1193363+1 359242 L3548 2013
| |
| 4990 6225*2^1193341+1 359236 L1344 2013
| |
| 4991 5685*2^1193328+1 359232 L1204 2013
| |
| 4992 3465*2^1193309+1 359226 L2859 2013
| |
| 4993 8993*2^1193265+1 359213 L3548 2013
| |
| 4994 1165*2^1193202+1 359193 L2540 2011
| |
| 4995 32041*2^1193168+1 359184 L123 2014 Generalized Fermat
| |
| 4996 6279*2^1193130+1 359172 L1158 2013
| |
| 4997 2273*2^1193085+1 359158 L2447 2013
| |
| 4998 105*2^1193072-1 359153 L384 2009
| |
| 4999 83*2^1192950-1 359116 L1884 2010
| |
| 5000 8*202^155771-1 359108 p258 2010
| |
| 5201 2*10859^87905+1 354767 g427 2014
| |
| Divides Phi(10859^87905,2)
| |
| 5539 174885*98^174885+1 348241 g157 2012 Generalized Cullen
| |
| 5570 83*2^1154617+1 347577 L446 2010
| |
| Divides GF(1154616,3) (**)
| |
| 5585 5245*2^1153762+1 347321 L1204 2013
| |
| Divides GF(1153761,12)
| |
| 5600 29*2^1152765+1 347019 g300 2005
| |
| Divides GF(1152760,10)
| |
| 5756 101*2^1142981+1 344074 L1446 2011
| |
| Divides GF(1142980,3)
| |
| 5805 Phi(3,-13617^41472) 342898 p294 2014 Generalized unique
| |
| 5897 113756*10^341268-1 341274 L3532 2013
| |
| Generalized Woodall (**)
| |
| 5903 2*263^140989+1 341188 g424 2011
| |
| Divides Phi(263^140989,2) (**)
| |
| 5938 33*2^1130884+1 340432 L165 2006
| |
| Divides GF(1130881,12)
| |
| 5955 163*2^1129934+1 340147 L1751 2010
| |
| Divides GF(1129933,10)
| |
| 5957 178192*3^712768+1 340083 L2777 2011
| |
| Generalized Cullen (**)
| |
| 6020 14521*6^435631+1 338991 L2777 2012
| |
| Generalized Cullen (**)
| |
| 6043 2*467^126775+1 338403 g425 2011
| |
| Divides Phi(467^126775,2) (**)
| |
| 6191 9999993*10^335905-1 335912 L1958 2013 Near-repdigit
| |
| 6417 9999993*10^331938-1 331945 L1958 2013 Near-repdigit
| |
| 6465 2145*2^1099064+1 330855 L1792 2013
| |
| Divides Fermat F(1099061)
| |
| 6521 Phi(3,-9499^41472) 329925 p294 2014 Generalized unique
| |
| 6665 2*2099^98525+1 327302 g424 2014
| |
| Divides Phi(2099^98525,2) (**)
| |
| 6666 93*2^1087202+1 327283 L669 2010
| |
| Divides GF(1087199,12)
| |
| 6707 2*2099^98351+1 326724 g424 2014
| |
| Divides Phi(2099^98351,2) (**)
| |
| 7089 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999
| |
| 320237 p44 2014 Palindrome (**)
| |
| 7094 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999
| |
| 320097 p44 2014 Palindrome (**)
| |
| 7109 6*10^319889-1 319890 p297 2010 Near-repdigit
| |
| 7319 1491*2^1050764+1 316315 L2826 2013
| |
| Divides GF(1050763,10)
| |
| 7409 10^314727-8*10^157363-1 314727 p235 2013
| |
| Near-repdigit, palindrome
| |
| 7611 9539*2^1034437+1 311401 L1502 2013
| |
| Divides GF(1034434,10)
| |
| 7631 549*2^1033187+1 311024 L1224 2011
| |
| Divides GF(1033186,5)
| |
| 7840 Phi(3,-14809^36864) 307485 p294 2014 Generalized unique
| |
| 7912 Phi(3,-1925^46656) 306477 L3839 2014
| |
| Generalized unique (**)
| |
| 7940 151*2^1016600+1 306030 L669 2010
| |
| Divides GF(1016599,5)
| |
| 7980 166585*68^166585-1 305274 p357 2013 Generalized Woodall
| |
| 8003 139948*151^139948+1 304949 g407 2010 Generalized Cullen
| |
| 8132 Phi(3,-12890^36864) 303041 p294 2014 Generalized unique
| |
| 8458 2^991961-2^495981+1 298611 x28 2005
| |
| Gaussian Mersenne norm 36
| |
| 8506 225*2^988695+1 297630 L1446 2010 Divides GF(988693,6)
| |
| 8541 191013*6^382026+1 297280 L3532 2014 Generalized Cullen
| |
| 8691 2*4019^81951+1 295362 g424 2014
| |
| Divides Phi(4019^81951,2) (**)
| |
| 8837 Phi(3,-29906^32768) 293324 L3839 2014 Generalized unique
| |
| 8999 2*1931^88527+1 290881 g424 2014
| |
| Divides Phi(1931^88527,2) (**)
| |
| 9039 10^290253-2*10^145126-1 290253 p235 2012
| |
| Near-repdigit, Palindrome
| |
| 9113 11*2^960901+1 289262 g277 2005
| |
| Divides Fermat F(960897)
| |
| 9127 Phi(3,-25719^32768) 289031 L3839 2014
| |
| Generalized unique (**)
| |
| 9165 Phi(3,-13299^34992) 288602 p294 2014 Generalized unique
| |
| 9244 2*7547^74163+1 287588 g424 2014
| |
| Divides Phi(7547^74163,2) (**)
| |
| 9264 2*827^98511+1 287407 g404 2009
| |
| Divides Phi(827^98511,2)
| |
| 9427 2*6311^74981+1 284936 g424 2014
| |
| Divides Phi(6311^74981,2) (**)
| |
| 9821 2*131^131925+1 279322 g424 2010
| |
| Divides Phi(131^131925,2) (**)
| |
| 9955 873*2^922545+1 277717 L153 2010 Divides GF(922543,3)
| |
| 10058 Phi(5,(1121302646*16001#/5+1)*(28633*16001#-1)^9)
| |
| 276344 x38 2014 Generalized unique (**)
| |
| 10059 Phi(5,(422716551*16001#/5+1)*(24696*16001#-1)^9)
| |
| 276340 x38 2014 Generalized unique (**)
| |
| 10060 Phi(5,(572949246*16001#/5+1)*(23208*16001#-1)^9)
| |
| 276340 x38 2014 Generalized unique (**)
| |
| 10061 Phi(5,(130813006*16001#/5+1)*(23208*16001#-1)^9)
| |
| 276337 x38 2014 Generalized unique (**)
| |
| 10062 Phi(5,(323243446*16001#/5+1)*(16051*16001#-1)^9)
| |
| 276333 x38 2014 Generalized unique (**)
| |
| 10063 Phi(5,(815932961*16001#/5+1)*(13303*16001#-1)^9)
| |
| 276332 x38 2014 Generalized unique (**)
| |
| 10064 Phi(5,(1353907141*16001#/5+1)*(11725*16001#-1)^9)
| |
| 276331 x38 2014 Generalized unique (**)
| |
| 10065 Phi(5,(1381740026*16001#/5+1)*(10862*16001#-1)^9)
| |
| 276330 x38 2014 Generalized unique (**)
| |
| 10067 Phi(5,(323094346*16001#/5+1)*(12015*16001#-1)^9)
| |
| 276329 x38 2014 Generalized unique (**)
| |
| 10112 113*2^916801+1 275987 L153 2009
| |
| Divides GF(916800,5), GF(916800,12) (**)
| |
| 10113 3*2^916773+1 275977 g245 2001
| |
| Divides GF(916771,3), GF(916772,10)
| |
| 10156 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999
| |
| 275495 p44 2012 Palindrome (**)
| |
| 10334 1705*2^906110+1 272770 L3174 2012
| |
| Divides Fermat F(906108)
| |
| 10598 10^269479-7*10^134739-1 269479 p235 2012
| |
| Near-repdigit, Palindrome
| |
| 10607 43*2^894766+1 269354 g279 2006 Divides GF(894765,5)
| |
| 10646 2*695^94625+1 268924 L1471 2011
| |
| Divides Phi(695^94625/5^4,2) [g427] (**)
| |
| 10796 11*2^886071+1 266735 g277 2005
| |
| Divides GF(886070,12)
| |
| 11421 2^859433-1 258716 SG 1994 Mersenne 33
| |
| 12065 249*2^832207+1 250522 L669 2010 Divides GF(832206,5)
| |
| 12288 1815*2^823632+1 247942 L1741 2012
| |
| Divides GF(823629,12)
| |
| 12811 7*2^804534+1 242190 g196 2003
| |
| Divides GF(804533,12)
| |
| 13211 5215*2^789906+1 237790 L2659 2012
| |
| Divides GF(789905,6) (**)
| |
| 14103 2^756839-1 227832 SG 1992 Mersenne 32 (**)
| |
| 14943 59*2^727815+1 219096 p227 2008
| |
| Divides GF(727814,12)
| |
| 16144 Phi(3,10^104279)+(137*10^104280+731*10^93395)*(10^10884-1)/999
| |
| 208559 p44 2014 Palindrome (**)
| |
| 16145 Phi(3,10^104276)+(137*10^104277+731*10^99683)*(10^4593-1)/999
| |
| 208553 p44 2014 Palindrome (**)
| |
| 16152 Phi(3,10^104257)+(137*10^104258+731*10^99193)*(10^5064-1)/999
| |
| 208515 p44 2014 Palindrome (**)
| |
| 16397 Phi(3,10^103289)+(137*10^103290+731*10^90449)*(10^12840-1)/999
| |
| 206579 p44 2014 Palindrome (**)
| |
| 16399 Phi(3,10^103282)+(137*10^103283+731*10^85009)*(10^18273-1)/999
| |
| 206565 p44 2014 Palindrome (**)
| |
| 16426 Phi(3,10^103182)+(137*10^103183+731*10^66639)*(10^36543-1)/999
| |
| 206365 x29 2014 Palindrome (**)
| |
| 16428 Phi(3,10^103174)+(137*10^103175+731*10^78103)*(10^25071-1)/999
| |
| 206349 p44 2014 Palindrome (**)
| |
| 16432 Phi(3,10^103133)+(137*10^103134+731*10^98675)*(10^4458-1)/999
| |
| 206267 p44 2014 Palindrome (**)
| |
| 16433 Phi(3,10^103131)+(137*10^103132+731*10^78393)*(10^24738-1)/999
| |
| 206263 p44 2014 Palindrome (**)
| |
| 16435 Phi(3,10^103124)+(137*10^103125+731*10^84659)*(10^18465-1)/999
| |
| 206249 p44 2014 Palindrome (**)
| |
| 16449 Phi(3,10^103078)+(137*10^103079+731*10^81751)*(10^21327-1)/999
| |
| 206157 p44 2014 Palindrome (**)
| |
| 16461 Phi(3,10^103042)+(137*10^103043+731*10^69745)*(10^33297-1)/999
| |
| 206085 p44 2014 Palindrome (**)
| |
| 16462 Phi(3,10^103042)+(137*10^103043+731*10^88753)*(10^14289-1)/999
| |
| 206085 p44 2013 Palindrome (**)
| |
| 16464 13*2^684560+1 206075 g267 2003
| |
| Divides GF(684557,10), GF(684559,6)
| |
| 16468 Phi(3,10^103028)+(137*10^103029+731*10^69587)*(10^33441-1)/999
| |
| 206057 p44 2014 Palindrome (**)
| |
| 16920 27*2^672007+1 202296 g279 2005
| |
| Divides Fermat F(672005) (**)
| |
| 17119 667071*2^667071-1 200815 g55 2000 Woodall
| |
| 17142 18543637900515*2^666668-1 200701 L2429 2012
| |
| Sophie Germain (2p+1)
| |
| 17143 9094283341425*2^666669-1 200701 p199 2011
| |
| Arithmetic progression (3,d=32289415560495*2^666666)
| |
| 17189 40464851170905*2^666666-1 200701 L1008 2011
| |
| Arithmetic progression (2,d=32289415560495*2^666666) [p199]
| |
| 17242 18543637900515*2^666667-1 200701 L2429 2012
| |
| Sophie Germain (p) (**)
| |
| 17243 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2)
| |
| 17244 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) (**)
| |
| 17365 26767338410445*2^666666-1 200700 p199 2011
| |
| Arithmetic progression (3,d=12521740750545*2^666666)
| |
| 17666 23716957113345*2^666666-1 200700 p199 2011
| |
| Arithmetic progression (3,d=2697434638065*2^666668)
| |
| 17716 11638738675125*2^666667-1 200700 p199 2011
| |
| Arithmetic progression (3,d=9571322415225*2^666666)
| |
| 18517 14646182194005*2^666666-1 200700 p199 2011
| |
| Arithmetic progression (3,d=3388839720735*2^666666)
| |
| 18559 3561399414975*2^666668-1 200700 L1661 2011
| |
| Arithmetic progression (2,d=12521740750545*2^666666) [p199]
| |
| 18619 13706154935025*2^666666-1 200700 L967 2011
| |
| Arithmetic progression (2,d=9571322415225*2^666666) [p199]
| |
| 18719 12927218561085*2^666666-1 200700 L2078 2011
| |
| Arithmetic progression (2,d=2697434638065*2^666668) [p199]
| |
| 18886 5628671236635*2^666667-1 200700 L1945 2011
| |
| Arithmetic progression (2,d=3388839720735*2^666666) [p199]
| |
| 19194 4087717805205*2^666667-1 200700 L1633 2010
| |
| Arithmetic progression (1,d=32289415560495*2^666666) [p199]
| |
| 19241 7868502752535*2^666666-1 200700 L1183 2010
| |
| Arithmetic progression (1,d=3388839720735*2^666666) [p199]
| |
| 19611 516854064975*2^666669-1 200700 L1286 2010
| |
| Arithmetic progression (1,d=9571322415225*2^666666) [p199]
| |
| 19801 2137480008825*2^666666-1 200699 L1706 2010
| |
| Arithmetic progression (1,d=2697434638065*2^666668) [p199]
| |
| 19846 1723856909355*2^666666-1 200699 L934 2010
| |
| Arithmetic progression (1,d=12521740750545*2^666666) [p199]
| |
| 21793 659*2^617815+1 185984 L732 2009
| |
| Divides Fermat F(617813)
| |
| 23069 151*2^585044+1 176118 L446 2007
| |
| Divides Fermat F(585042)
| |
| 23813 519*2^567235+1 170758 L656 2009
| |
| Divides Fermat F(567233)
| |
| 23925 392113#+1 169966 p16 2001 Primorial
| |
| 25564 366439#+1 158936 p16 2001 Primorial
| |
| 27163 243*2^495732+1 149233 L165 2007
| |
| Divides Fermat F(495728), GF(495726,3), GF(495728,6), GF(495727,12)
| |
| (**)
| |
| 27841 9265*2^482072+1 145123 L635 2009
| |
| Divides GF(482070,10)
| |
| 27846 481899*2^481899+1 145072 gm 1998 Cullen
| |
| 28109 651*2^476632+1 143484 L668 2008
| |
| Divides Fermat F(476624)
| |
| 28194 34790!-1 142891 p85 2002 Factorial
| |
| 28202 6841*2^474348+1 142797 L1065 2009
| |
| Divides GF(474347,10)
| |
| 28329 89*2^472099+1 142118 p114 2004
| |
| Divides Fermat F(472097)
| |
| 28844 3911*2^462579+1 139254 L679 2009
| |
| Divides GF(462577,10)
| |
| 32373 2^364289-2^182145+1 109662 p58 2001
| |
| Gaussian Mersenne norm 35
| |
| 32507 361275*2^361275+1 108761 DS 1998 Cullen
| |
| 32674 26951!+1 107707 p65 2002 Factorial
| |
| 34175 65516468355*2^333333+1 100355 L923 2009 Twin (p+2)
| |
| 34176 65516468355*2^333333-1 100355 L923 2009 Twin (p) (**)
| |
| 39045 21480!-1 83727 p65 2001 Factorial
| |
| 39454 183027*2^265441-1 79911 L983 2010
| |
| Sophie Germain (2p+1)
| |
| 39455 183027*2^265440-1 79911 L983 2010 Sophie Germain (p)
| |
| 39530 262419*2^262419+1 79002 DS 1998 Cullen
| |
| 39865 648621027630345*2^253825-1 76424 x24 2009
| |
| Sophie Germain (2p+1)
| |
| 39866 620366307356565*2^253825-1 76424 x24 2009
| |
| Sophie Germain (2p+1)
| |
| 39867 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p)
| |
| 39868 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p)
| |
| 40364 primV(111534,1,27000) 72683 x25 2013
| |
| Generalized Lucas primitive part (**)
| |
| 41726 2^216091-1 65050 S 1985 Mersenne 31
| |
| 41949 (63847^13339-1)/63846 64091 p170 2013
| |
| Generalized repunit (**)
| |
| 42107 145823#+1 63142 p21 2000 Primorial
| |
| 42382 2^203789+2^101895+1 61347 O 2000
| |
| Gaussian Mersenne norm 34
| |
| 42640 (26371^13681-1)/26370 60482 p170 2012
| |
| Generalized repunit (**)
| |
| 43310 (4529^16381-1)/4528 59886 CH2 2012
| |
| Generalized repunit (**)
| |
| 43396 (9082^15091-1)/9081 59729 CH2 2014
| |
| Generalized repunit (**)
| |
| 43673 2003663613*2^195000+1 58711 L202 2007 Twin (p+2)
| |
| 43674 2003663613*2^195000-1 58711 L202 2007 Twin (p)
| |
| 43931 primV(27655,1,19926) 57566 x25 2013
| |
| Generalized Lucas primitive part (**)
| |
| 45590 607095*2^176312-1 53081 L983 2009
| |
| Sophie Germain (2p+1)
| |
| 45591 607095*2^176311-1 53081 L983 2009 Sophie Germain (p)
| |
| 45740 (38284^11491-1)/38283 52659 CH2 2013
| |
| Generalized repunit (**)
| |
| 45958 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2)
| |
| 45959 38529154785*2^173250-1 52165 L3494 2014 Twin (p)
| |
| 46089 48047305725*2^172404-1 51910 L99 2007
| |
| Sophie Germain (2p+1)
| |
| 46090 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p)
| |
| 46188 137211941292195*2^171961-1 51780 x24 2006
| |
| Sophie Germain (2p+1)
| |
| 46189 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2)
| |
| 46190 194772106074315*2^171960-1 51780 x24 2007 Twin (p)
| |
| 46191 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p)
| |
| 46192 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2)
| |
| 46193 100314512544015*2^171960-1 51780 x24 2006 Twin (p)
| |
| 46194 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2)
| |
| 46195 16869987339975*2^171960-1 51779 x24 2005 Twin (p)
| |
| 46409 (34120^11311-1)/34119 51269 CH2 2011
| |
| Generalized repunit (**)
| |
| 47007 33218925*2^169690+1 51090 g259 2002 Twin (p+2)
| |
| 47008 33218925*2^169690-1 51090 g259 2002 Twin (p)
| |
| 47739 2^160423-2^80212+1 48293 O 2000
| |
| Gaussian Mersenne norm 33
| |
| 47860 1579755*2^158713+1 47784 L3494 2014
| |
| Cunningham chain 2nd kind (2p-1)
| |
| 47861 1579755*2^158712+1 47784 L3494 2014
| |
| Cunningham chain 2nd kind (p)
| |
| 47865 primV(40395,-1,15588) 47759 x23 2007
| |
| Generalized Lucas primitive part (**)
| |
| 47934 primV(53394,-1,15264) 47200 CH4 2007
| |
| Generalized Lucas primitive part (**)
| |
| 48142 22835841624*7^54321+1 45917 p296 2010 Twin (p+2)
| |
| 48143 22835841624*7^54321-1 45917 p296 2010 Twin (p)
| |
| 48179 1679081223*2^151618+1 45651 L527 2012 Twin (p+2)
| |
| 48180 1679081223*2^151618-1 45651 L527 2012 Twin (p)
| |
| 48184 9606632571*2^151515+1 45621 p282 2014 Twin (p+2)
| |
| 48185 9606632571*2^151515-1 45621 p282 2014 Twin (p)
| |
| 48209 151023*2^151023-1 45468 g25 1998 Woodall
| |
| 48782 648309*2^148311+1 44652 L983 2010
| |
| Cunningham chain 2nd kind (2p-1)
| |
| 48783 648309*2^148310+1 44652 L983 2010
| |
| Cunningham chain 2nd kind (p)
| |
| 48981 71509*2^143019-1 43058 g23 1998
| |
| Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049)
| |
| [x12]
| |
| 49084 84966861*2^140219+1 42219 L3121 2012 Twin (p+2)
| |
| 49085 84966861*2^140219-1 42219 L3121 2012 Twin (p)
| |
| 49093 31737014565*2^140004-1 42156 L95 2010
| |
| Sophie Germain (2p+1)
| |
| 49094 31737014565*2^140003-1 42156 L95 2010 Sophie Germain (p)
| |
| 49095 14962863771*2^140002-1 42155 L95 2010
| |
| Sophie Germain (2p+1)
| |
| 49096 12378188145*2^140002+1 42155 L95 2010 Twin (p+2)
| |
| 49097 12378188145*2^140002-1 42155 L95 2010 Twin (p)
| |
| 49098 23272426305*2^140001+1 42155 L95 2010 Twin (p+2)
| |
| 49099 23272426305*2^140001-1 42155 L95 2010 Twin (p)
| |
| 49100 14962863771*2^140001-1 42155 L95 2010 Sophie Germain (p)
| |
| 49141 (32556^9283-1)/32555 41887 CH2 2011
| |
| Generalized repunit (**)
| |
| 49410 (1549^12973-1)/1548 41382 p170 2010
| |
| Generalized repunit (**)
| |
| 49459 552903*2^136157+1 40994 L983 2010
| |
| Cunningham chain 2nd kind (2p-1)
| |
| 49460 552903*2^136156+1 40993 L983 2010
| |
| Cunningham chain 2nd kind (p)
| |
| 50300 2^132049-1 39751 S 1983 Mersenne 30
| |
| 50313 primV(4836,1,16704) 39616 x25 2013
| |
| Generalized Lucas primitive part (**)
| |
| 50804 8151728061*2^125987+1 37936 p35 2010 Twin (p+2)
| |
| 50805 8151728061*2^125987-1 37936 p35 2010 Twin (p)
| |
| 50902 163221*2^124601+1 37514 L983 2009
| |
| Cunningham chain 2nd kind (2p-1)
| |
| 50903 163221*2^124600+1 37514 L983 2009
| |
| Cunningham chain 2nd kind (p)
| |
| 50954 33759183*2^123459-1 37173 L527 2009
| |
| Sophie Germain (2p+1)
| |
| 50955 33759183*2^123458-1 37173 L527 2009 Sophie Germain (p)
| |
| 50978 (28839^8317-1)/28838 37090 CH6 2006
| |
| Generalized repunit (**)
| |
| 51134 (4366^10099-1)/4365 36758 x14 2011
| |
| Generalized repunit (**)
| |
| 51173 7068555*2^121302-1 36523 L100 2005
| |
| Sophie Germain (2p+1)
| |
| 51174 7068555*2^121301-1 36523 L100 2005 Sophie Germain (p)
| |
| 51179 2*(2^1562*3^109*828814575031^420*955637315837^480*672198801383^498*162\
| |
| 946224587^484*258724139309^335*327170641169^422*880151556857^437-1)+1
| |
| 36498 p360 2013 Sophie Germain (2p+1)
| |
| 51182 2^1562*3^109*828814575031^420*955637315837^480*672198801383^498*162946\
| |
| 224587^484*258724139309^335*327170641169^422*880151556857^437-1
| |
| 36498 p360 2013 Sophie Germain (p)
| |
| 51330 2^1799*3^137*474579581429^465*443749004359^326*644541865141^488*561014\
| |
| 826899^421*725590842793^493*623163115793^476*383657519591^332+1
| |
| 35851 p360 2013 Twin (p+2)
| |
| 51331 2^1799*3^137*474579581429^465*443749004359^326*644541865141^488*561014\
| |
| 826899^421*725590842793^493*623163115793^476*383657519591^332-1
| |
| 35851 p360 2013 Twin (p)
| |
| 51335 598899*2^118987+1 35825 L983 2010 Twin (p+2)
| |
| 51336 598899*2^118987-1 35825 L983 2010 Twin (p)
| |
| 51338 441797560*3^75001+1 35794 L3323 2012
| |
| Cunningham chain 2nd kind (2p-1)
| |
| 51340 220898780*3^75001+1 35793 L3323 2012
| |
| Cunningham chain 2nd kind (p)
| |
| 51431 2*(2^1512*3^143*973012422269^378*471613096919^407*540579043769^407*251\
| |
| 138810633^368*589234783037^445*475774278173^498*579909737837^457-1)+1
| |
| 35206 p360 2013 Sophie Germain (2p+1)
| |
| 51432 2^1512*3^143*973012422269^378*471613096919^407*540579043769^407*251138\
| |
| 810633^368*589234783037^445*475774278173^498*579909737837^457-1
| |
| 35206 p360 2013 Sophie Germain (p)
| |
| 51494 307259241*2^115599+1 34808 g336 2009 Twin (p+2)
| |
| 51495 307259241*2^115599-1 34808 g336 2009 Twin (p)
| |
| 51528 primV(38513,-1,11502) 34668 x23 2006
| |
| Generalized Lucas primitive part (**)
| |
| 51573 2540041185*2^114730-1 34547 g294 2003
| |
| Sophie Germain (2p+1)
| |
| 51581 2540041185*2^114729-1 34547 g294 2003 Sophie Germain (p)
| |
| 51687 60194061*2^114689+1 34533 g294 2002 Twin (p+2)
| |
| 51688 60194061*2^114689-1 34533 g294 2002 Twin (p)
| |
| 51741 primV(9008,1,16200) 34168 x23 2005
| |
| Generalized Lucas primitive part (**)
| |
| 51872 5558745*10^33334+1 33341 p311 2011 Twin (p+2)
| |
| 51873 5558745*10^33334-1 33341 p311 2011 Twin (p)
| |
| 51969 2^110503-1 33265 WC 1988 Mersenne 29 (**)
| |
| 52019 primV(6586,1,16200) 32993 x25 2013
| |
| Generalized Lucas primitive part (**)
| |
| 52371 1124044292325*2^108000-1 32524 L99 2006
| |
| Sophie Germain (2p+1)
| |
| 52372 1124044292325*2^107999-1 32523 L99 2006 Sophie Germain (p)
| |
| 52373 112886032245*2^108001-1 32523 L99 2006
| |
| Sophie Germain (2p+1)
| |
| 52374 112886032245*2^108000-1 32523 L99 2006 Sophie Germain (p)
| |
| 53346 2^106693+2^53347+1 32118 O 2000
| |
| Gaussian Mersenne norm 32
| |
| 53449 170152540*3^66215-1 31601 L3323 2012
| |
| Sophie Germain (2p+1)
| |
| 53450 85076270*3^66215-1 31601 L3323 2012 Sophie Germain (p)
| |
| 53508 (V(77786,1,6453)+1)/(V(77786,1,27)+1)
| |
| 31429 x25 2012 Lehmer primitive part (**)
| |
| 53578 2^1515*48688484017^560*133579779967^573*383159376767^784*960310896529^\
| |
| 769+3 31112 p360 2013
| |
| Sophie Germain (2p+1)
| |
| 53579 2^1514*48688484017^560*133579779967^573*383159376767^784*960310896529^\
| |
| 769+1 31112 p360 2013 Sophie Germain (p)
| |
| 53592 primV(10987,1,14400) 31034 x25 2005
| |
| Generalized Lucas primitive part (**)
| |
| 53825 133603707*2^100014-1 30116 L167 2012
| |
| Sophie Germain (2p+1)
| |
| 53826 133603707*2^100013-1 30116 L167 2012 Sophie Germain (p)
| |
| 53827 38588805195*2^100003-1 30115 L95 2009
| |
| Sophie Germain (2p+1)
| |
| 53830 38588805195*2^100002-1 30115 L95 2009 Sophie Germain (p)
| |
| 53917 (11379^7411-1)/11378 30056 x14 2009
| |
| Generalized repunit (**)
| |
| 53984 49363*2^98727-1 29725 Y 1997 Woodall
| |
| 53988 U(2341,-1,8819) 29712 x25 2008
| |
| Generalized Lucas number (**)
| |
| 55506 primV(24127,-1,6718) 29433 CH3 2005
| |
| Generalized Lucas primitive part (**)
| |
| 55640 (13320^6997-1)/13319 28856 x14 2010
| |
| Generalized repunit (**)
| |
| 55687 primV(45922,1,11520) 28644 x25 2011
| |
| Generalized Lucas primitive part (**)
| |
| 55699 primV(205011) 28552 x39 2009
| |
| Lucas primitive part (**)
| |
| 55730 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number (**)
| |
| 55788 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number (**)
| |
| 55911 90825*2^90825+1 27347 Y 1997 Cullen
| |
| 56074 primV(5673,1,13500) 27028 CH3 2005
| |
| Generalized Lucas primitive part (**)
| |
| 56190 primV(44368,1,9504) 26768 CH3 2005
| |
| Generalized Lucas primitive part (**)
| |
| 56237 (3429^7549-1)/3428 26684 x14 2009
| |
| Generalized repunit (**)
| |
| 56251 "τ(157^2206)" 26643 FE1 2011 ECPP (**)
| |
| 56442 primV(10986,-1,9756) 26185 x23 2005
| |
| Generalized Lucas primitive part (**)
| |
| 56543 primV(11076,-1,12000) 25885 x25 2005
| |
| Generalized Lucas primitive part (**)
| |
| 56623 2^85237+2^42619+1 25659 x16 2000
| |
| Gaussian Mersenne norm 31
| |
| 56701 primV(17505,1,11250) 25459 x25 2011
| |
| Generalized Lucas primitive part (**)
| |
| 56703 U(2325,-1,7561) 25451 x20 2013
| |
| Generalized Lucas number (**)
| |
| 56758 primV(42,-1,23376) 25249 x23 2007
| |
| Generalized Lucas primitive part (**)
| |
| 56794 primV(7577,-1,10692) 25140 x33 2007
| |
| Generalized Lucas primitive part (**)
| |
| 56800 primV(44573,-1,10125) 25105 CH4 2007
| |
| Generalized Lucas primitive part (**)
| |
| 56804 (2^83339+1)/3 25088 c54 2014
| |
| ECPP, generalized Lucas number, Wagstaff (**)
| |
| 56819 6753^5122+5122^6753 25050 FE1 2010 ECPP (**)
| |
| 56886 primV(13896,1,11250) 24858 x25 2011
| |
| Generalized Lucas primitive part (**)
| |
| 56954 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number (**)
| |
| 56967 (13096^5953-1)/13095 24506 CH6 2007
| |
| Generalized repunit (**)
| |
| 57622 492590931*2^80000-1631979959*2^25001-1
| |
| 24092 p199 2010
| |
| Arithmetic progression (4,d=164196977*2^80000-1631979959*2^25000)
| |
| (**)
| |
| 57762 "-τ(691^1522)" 23770 c65 2014 ECPP (**)
| |
| 57769 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number (**)
| |
| 57816 6917!-1 23560 g1 1998 Factorial
| |
| 57852 (89^11971-1)/88 23335 CH2 2009
| |
| Generalized repunit (**)
| |
| 57854 (23151^5347-1)/23150 23333 x14 2008
| |
| Generalized repunit (**)
| |
| 57869 2^77291+2^38646+1 23267 O 2000
| |
| Gaussian Mersenne norm 30
| |
| 57875 (V(59936,1,4863)+1)/(V(59936,1,3)+1)
| |
| 23220 x25 2013 Lehmer primitive part (**)
| |
| 57911 (5855^6121-1)/5854 23058 CH1 2005
| |
| Generalized repunit (**)
| |
| 57913 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number (**)
| |
| 58013 (V(45366,1,4857)+1)/(V(45366,1,3)+1)
| |
| 22604 x25 2013 Lehmer primitive part (**)
| |
| 58032 "τ(257^1698)" 22506 c72 2014 ECPP (**)
| |
| 58056 (2008^6781-1)/2007 22393 CH6 2010
| |
| Generalized repunit (**)
| |
| 58089 10^22250+57913 22251 c35 2014 ECPP (**)
| |
| 58098 2^73845+14717 22230 c61 2013 ECPP (**)
| |
| 58132 2^73360+10711 22084 c61 2014 ECPP (**)
| |
| 58243 U(19258,-1,5039) 21586 x23 2007
| |
| Generalized Lucas number (**)
| |
| 58270 6380!+1 21507 g1 1998 Factorial
| |
| 58353 (V(23354,1,4869)-1)/(V(23354,1,9)-1)
| |
| 21231 x25 2013 Lehmer primitive part (**)
| |
| 58354 (19979^4933-1)/19978 21211 x14 2011
| |
| Generalized repunit (**)
| |
| 58383 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number (**)
| |
| 58539 ((((((2521008887^3+80)^3+12)^3+450)^3+894)^3+3636)^3+70756)^3+97220
| |
| 20562 FE1 2006 ECPP, Mills' prime (**)
| |
| 58598 U(11200,-1,5039) 20400 x25 2004
| |
| Generalized Lucas number, cyclotomy (**)
| |
| 58663 Phi(23749,-10) 20160 c47 2014 Unique, ECPP (**)
| |
| 58803 "τ(619^1296)" 19900 c72 2014 ECPP (**)
| |
| 58822 V(94823) 19817 c73 2014
| |
| Lucas number, ECPP (**)
| |
| 58830 U(8454,-1,5039) 19785 x25 2013
| |
| Generalized Lucas number (**)
| |
| 58839 (9473^4969-1)/9472 19756 CH2 2008
| |
| Generalized repunit (**)
| |
| 59896 U(6584,-1,5039) 19238 x23 2007
| |
| Generalized Lucas number (**)
| |
| 59921 (2^63703-1)/42808417 19169 c59 2014
| |
| Mersenne cofactor, ECPP (**)
| |
| 60056 V(89849) 18778 c70 2014
| |
| Lucas number, ECPP (**)
| |
| 60071 primV(145353) 18689 c69 2013
| |
| ECPP, Lucas primitive part (**)
| |
| 60072 Phi(14943,-100) 18688 c47 2014 Unique, ECPP (**)
| |
| 60079 Phi(741,-63847^9)/44250132909040111
| |
| 18666 c54 2013 ECPP (**)
| |
| 60085 587*43103#/2310+657402 18662 c35 2013 ECPP (**)
| |
| 60086 587*43103#/2310-455704 18662 c35 2013 ECPP (**)
| |
| 60099 "τ(821^1162)" 18626 c75 2014 ECPP (**)
| |
| 60183 Phi(18827,10) 18480 c47 2014 Unique, ECPP (**)
| |
| 60311 42209#+1 18241 p8 1999 Primorial
| |
| 60813 (V(46662,1,3879)-1)/(V(46662,1,9)-1)
| |
| 18069 x25 2012 Lehmer primitive part (**)
| |
| 60852 7457*2^59659+1 17964 Y 1997 Cullen
| |
| 61105 Phi(26031,-10) 17353 c47 2014 Unique, ECPP (**)
| |
| 61151 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number (**)
| |
| 61201 U(81839) 17103 p54 2001
| |
| Fibonacci number (**)
| |
| 61212 V(81671) 17069 c66 2013
| |
| Lucas number, ECPP (**)
| |
| 61363 6521953289619*2^55555+1 16737 p296 2013 Triplet (3)
| |
| 61364 6521953289619*2^55555-1 16737 p296 2013 Triplet (2)
| |
| 61365 6521953289619*2^55555-5 16737 c58 2013
| |
| Triplet (1), ECPP (**)
| |
| 61409 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002
| |
| Lehmer number, cyclotomy (**)
| |
| 61475 U(10803,1,4081)-U(10803,1,4080) 16457 x25 2005
| |
| Lehmer number, cyclotomy (**)
| |
| 61513 U(11091,-1,4049) 16375 CH3 2005
| |
| Generalized Lucas number (**)
| |
| 61560 (V(21151,1,3777)-1)/(V(21151,1,3)-1)
| |
| 16324 x25 2011 Lehmer primitive part (**)
| |
| 61596 U(2554,-1,4751) 16185 CH3 2005
| |
| Generalized Lucas number (**)
| |
| 61620 U(1599,-1,5039) 16141 x23 2007
| |
| Generalized Lucas number (**)
| |
| 61681 U(2878,1,4620)-U(2878,1,4619) 15978 x25 2013 Lehmer number (**)
| |
| 61682 U(10853,1,3960)+U(10853,1,3959) 15977 x25 2002
| |
| Lehmer number, cyclotomy
| |
| 61873 U(9667,1,3960)-U(9667,1,3959) 15778 x25 2002
| |
| Lehmer number, cyclotomy
| |
| 61891 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP (**)
| |
| 61895 U(14257,-1,3779) 15694 x25 2004
| |
| Generalized Lucas number, cyclotomy (**)
| |
| 61963 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44))
| |
| 15537 x38 2009 Lehmer primitive part (**)
| |
| 62042 (V(824,1,5277)-1)/(V(824,1,3)-1) 15379 x25 2013
| |
| Lehmer primitive part (**)
| |
| 62085 U(13283,1,3697)+U(13283,1,3696) 15240 x25 2011 Lehmer number (**)
| |
| 63008 1008075799*34687#+1 15004 p252 2010
| |
| Arithmetic progression (4,d=2571033*34687#) (**)
| |
| 63044 (V(42995,1,3231)+1)/(V(42995,1,9)+1)
| |
| 14929 x25 2012 Lehmer primitive part (**)
| |
| 63057 U(8747,1,3780)+U(8747,1,3779) 14897 x25 2005 Lehmer number (**)
| |
| 63079 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP (**)
| |
| 63089 U(25700,1,3360)+U(25700,1,3359) 14813 x25 2004
| |
| Lehmer number, cyclotomy (**)
| |
| 63090 2^49207-2^24604+1 14813 x16 2000
| |
| Gaussian Mersenne norm 29
| |
| 63159 (V(8003,1,3771)+1)/(V(8003,1,9)+1)
| |
| 14685 x25 2013 Lehmer primitive part (**)
| |
| 63170 U(1493,-1,4621) 14665 CH3 2005
| |
| Generalized Lucas number (**)
| |
| 63184 U(7431,1,3781)-U(7431,1,3780) 14633 x25 2013 Lehmer number (**)
| |
| 63186 U(4951,1,3960)-U(4951,1,3959) 14628 CH3 2005 Lehmer number (**)
| |
| 63261 U(6571,1,3781)-U(6571,1,3780) 14431 x25 2013 Lehmer number (**)
| |
| 63362 U(6396,1,3781)+U(6396,1,3780) 14387 x25 2013 Lehmer number (**)
| |
| 63365 U(12924,-12925,3499) 14382 x25 2005
| |
| Generalized Lucas number
| |
| 63420 U(12113,-1,3499) 14284 CH3 2005
| |
| Generalized Lucas number (**)
| |
| 63427 U(5192,1,3841)-U(5192,1,3840) 14267 x23 2005 Lehmer number (**)
| |
| 63444 U(2441,-1,4201) 14228 CH3 2005
| |
| Generalized Lucas number (**)
| |
| 63549 (V(5111,1,3789)+1)/(V(5111,1,9)+1)
| |
| 14019 x25 2013 Lehmer primitive part (**)
| |
| 63553 (V(5763,1,3753)+1)/(V(5763,1,27)+1)
| |
| 14013 x25 2011 Lehmer primitive part (**)
| |
| 63704 6*Bern(5534)/(89651360098907*22027790155387*114866371)
| |
| 13862 c71 2014 Irregular, ECPP (**)
| |
| 63718 (V(5132,1,3753)+1)/(V(5132,1,27)+1)
| |
| 13825 x25 2011 Lehmer primitive part (**)
| |
| 63739 primV(82630) 13814 c74 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 63791 (V(4527,1,3771)+1)/(V(4527,1,9)+1)
| |
| 13754 x25 2013 Lehmer primitive part (**)
| |
| 63911 6*Bern(5462)/(724389557*8572589*3742097186099)
| |
| 13657 c64 2013 Irregular, ECPP (**)
| |
| 64039 U(11194,-11195,3361) 13605 x25 2004
| |
| Generalized Lucas number (**)
| |
| 64140 263821581*2^45001-487069965*2^25002-1
| |
| 13556 p199 2010
| |
| Arithmetic progression (4,d=87940527*2^45001-487069965*2^25001) (**)
| |
| 64141 4103163*2^45007-183009063*2^25003-1
| |
| 13556 p199 2010
| |
| Arithmetic progression (4,d=1367721*2^45007-183009063*2^25002) (**)
| |
| 64158 664227*2^45001-21037539*2^25006-1 13553 p199 2010
| |
| Arithmetic progression (4,d=221409*2^45001-21037539*2^25005) (**)
| |
| 64166 U(2219,-1,4049) 13546 CH3 2005
| |
| Generalized Lucas number (**)
| |
| 64246 U(475,-1,5039) 13486 x25 2003
| |
| Generalized Lucas number, cyclotomy (**)
| |
| 64263 (V(3813,1,3771)-1)/(V(3813,1,9)-1)
| |
| 13473 x25 2011 Lehmer primitive part (**)
| |
| 64503 (V(3476,1,3771)-1)/(V(3476,1,9)-1)
| |
| 13322 x25 2011 Lehmer primitive part (**)
| |
| 64508 (V(3755,1,3753)-1)/(V(3755,1,27)-1)
| |
| 13319 x25 2011 Lehmer primitive part (**)
| |
| 64701 (V(3177,1,3771)-1)/(V(3177,1,9)-1)
| |
| 13175 x25 2011 Lehmer primitive part (**)
| |
| 64761 (V(3088,1,3771)+1)/(V(3088,1,9)+1)
| |
| 13129 x25 2011 Lehmer primitive part (**)
| |
| 64887 U(7537,-7538,3361) 13028 x23 2007
| |
| Generalized Lucas number (**)
| |
| 64893 U(7512,-7513,3361) 13023 x25 2004
| |
| Generalized Lucas number (**)
| |
| 65059 (2^42737+1)/3 12865 M 2007
| |
| ECPP, generalized Lucas number, Wagstaff (**)
| |
| 65242 (V(49596,1,3375)+1)/(V(49596,1,675)+1)
| |
| 12678 x25 2006 Lehmer primitive part (**)
| |
| 65421 6*Bern(5078)/(64424527603*9985070580644364287)
| |
| 12533 c63 2013 Irregular, ECPP (**)
| |
| 65498 (2^41521-1)/41602235382028197528613357724450752065089
| |
| 12459 c54 2012 Mersenne cofactor, ECPP (**)
| |
| 65608 (2^41263-1)/(1402943*983437775590306674647)
| |
| 12395 c59 2012 Mersenne cofactor, ECPP (**)
| |
| 65858 p(120052058) 12198 c59 2012
| |
| Partitions, ECPP (**)
| |
| 65859 p(120037981) 12197 c59 2014
| |
| Partitions, ECPP (**)
| |
| 66435 primV(57724) 12063 p54 2001
| |
| Lucas primitive part, cyclotomy (**)
| |
| 66865 V(56003) 11704 p193 2006 Lucas number (**)
| |
| 66876 p(110030755) 11677 c59 2014
| |
| Partitions, ECPP (**)
| |
| 67089 primU(67825) 11336 x23 2007
| |
| Fibonacci primitive part (**)
| |
| 67105 primV(64484) 11306 c74 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 67128 3610!-1 11277 C 1993 Factorial (**)
| |
| 67221 p(100090547) 11137 c59 2014
| |
| Partitions, ECPP (**)
| |
| 67223 p(100077222) 11136 c59 2012
| |
| Partitions, ECPP (**)
| |
| 67225 p(100065157) 11135 c59 2014
| |
| Partitions, ECPP (**)
| |
| 67226 p(100057273) 11135 c59 2014
| |
| Partitions, ECPP (**)
| |
| 67262 primV(63119) 11060 c74 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 67276 V(52859)/1124137922466041911 11029 c8 2014
| |
| Lucas cofactor, ECPP (**)
| |
| 67302 primV(52534) 10979 c8 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 67305 primV(83277) 10970 c74 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 67340 3507!-1 10912 C 1992 Factorial (**)
| |
| 67402 primV(68210) 10774 c8 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 67408 1258566*Bern(4462)/(2231*596141126178107*4970022131749)
| |
| 10763 c64 2013 Irregular, ECPP (**)
| |
| 67431 primV(77058) 10729 CH3 2005
| |
| Lucas primitive part (**)
| |
| 67437 primV(112770) 10714 c8 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 67442 V(51349)/224417260052884218046541 10708 c8 2014
| |
| Lucas cofactor, ECPP (**)
| |
| 67448 V(51169) 10694 p54 2001 Lucas number (**)
| |
| 67467 U(51031)/95846689435051369 10648 c8 2014
| |
| Fibonacci cofactor, ECPP (**)
| |
| 67476 V(50989)/69818796119453411 10640 c8 2014
| |
| Lucas cofactor, ECPP (**)
| |
| 67491 Phi(13285,-10) 10625 c47 2012 Unique, ECPP (**)
| |
| 67492 U(50833) 10624 CH4 2005
| |
| Fibonacci number (**)
| |
| 67524 p(90048122) 10563 c59 2012
| |
| Partitions, ECPP (**)
| |
| 67536 1213266377*2^35000+4859 10546 c4 2014
| |
| ECPP, consecutive primes arithmetic progression (3,d=2430) (**)
| |
| 67537 1213266377*2^35000+2429 10546 c4 2014
| |
| ECPP, consecutive primes arithmetic progression (2,d=2430) (**)
| |
| 67538 1213266377*2^35000-1 10546 p44 2014
| |
| Consecutive primes arithmetic progression (1,d=2430)
| |
| 67539 1043085905*2^35000+18197 10546 c4 2014
| |
| ECPP, consecutive primes arithmetic progression (3,d=18198) (**)
| |
| 67540 1043085905*2^35000-1 10546 p44 2014
| |
| Consecutive primes arithmetic progression (2,d=18198)
| |
| 67541 1043085905*2^35000-18199 10546 c4 2014
| |
| ECPP, consecutive primes arithmetic progression (1,d=18198) (**)
| |
| 67542 109061779*2^35003+11855 10545 c4 2014
| |
| ECPP, consecutive primes arithmetic progression (3,d=5928) (**)
| |
| 67543 109061779*2^35003+5927 10545 c4 2014
| |
| ECPP, consecutive primes arithmetic progression (2,d=5928) (**)
| |
| 67544 109061779*2^35003-1 10545 p44 2014
| |
| Consecutive primes arithmetic progression (1,d=5928)
| |
| 67547 350049825*2^35000+7703 10545 c4 2014
| |
| ECPP, consecutive primes arithmetic progression (3,d=3852) (**)
| |
| 67548 350049825*2^35000+3851 10545 c4 2014
| |
| ECPP, consecutive primes arithmetic progression (2,d=3852) (**)
| |
| 67549 350049825*2^35000-1 10545 p44 2014
| |
| Consecutive primes arithmetic progression (1,d=3852)
| |
| 67552 146462479*2^35001+8765 10545 c4 2013
| |
| ECPP, consecutive primes arithmetic progression (3,d=8766) (**)
| |
| 67553 146462479*2^35001-1 10545 p44 2013
| |
| Consecutive primes arithmetic progression (2,d=8766)
| |
| 67554 146462479*2^35001-8767 10545 c4 2013
| |
| ECPP, consecutive primes arithmetic progression (1,d=8766) (**)
| |
| 67589 5110664609396115*2^34946-1 10536 p375 2014
| |
| Cunningham chain (4p+3)
| |
| 67590 5110664609396115*2^34945-1 10536 p375 2014
| |
| Cunningham chain (2p+1)
| |
| 67591 5110664609396115*2^34944-1 10535 p375 2014 Cunningham chain (p)
| |
| 67607 primV(77841) 10496 x25 2005
| |
| Lucas primitive part (**)
| |
| 67614 primU(55297) 10483 c8 2014
| |
| Fibonacci primitive part, ECPP (**)
| |
| 67617 914546877*2^34774-1 10477 L983 2010
| |
| Cunningham chain (4p+3)
| |
| 67618 914546877*2^34773-1 10477 L983 2010
| |
| Cunningham chain (2p+1)
| |
| 67619 914546877*2^34772-1 10477 L983 2010 Cunningham chain (p)
| |
| 67631 primA(219135) 10462 c8 2014
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 67656 1288726869465789*2^34567+1 10421 p296 2014 Triplet (3)
| |
| 67657 1288726869465789*2^34567-1 10421 p296 2014 Triplet (2)
| |
| 67658 1288726869465789*2^34567-5 10421 c58 2014
| |
| ECPP, Triplet (1) (**)
| |
| 67676 24029#+1 10387 C 1993 Primorial (**)
| |
| 67702 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP (**)
| |
| 67721 V(49391)/298414424560419239 10305 c8 2013
| |
| Lucas cofactor, ECPP (**)
| |
| 67739 23801#+1 10273 C 1993 Primorial (**)
| |
| 67840 primV(77292) 10112 c74 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 67849 p(82479677) 10109 c59 2012
| |
| Partitions, ECPP (**)
| |
| 67858 p(82352631) 10101 c56 2012
| |
| Partitions, ECPP (**)
| |
| 67868 81505264551807*2^33444+5 10082 c58 2012 Triplet (3), ECPP
| |
| 67869 81505264551807*2^33444+1 10082 p296 2012 Triplet (2)
| |
| 67870 81505264551807*2^33444-1 10082 p296 2012 Triplet (1)
| |
| 67876 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP (**)
| |
| 67898 2072644824759*2^33333+5 10047 FE5 2008
| |
| Triplet (3), ECPP (**)
| |
| 67899 2072644824759*2^33333+1 10047 L645 2008 Triplet (2)
| |
| 67900 2072644824759*2^33333-1 10047 L645 2008 Triplet (1)
| |
| 68232 p(80036992) 9958 c46 2011 Partitions, ECPP
| |
| 68261 primV(75126) 9901 c8 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 68343 32469*2^32469+1 9779 MM 1997 Cullen
| |
| 68345 (2^32531-1)/(65063*25225122959) 9778 c60 2012
| |
| Mersenne cofactor, ECPP (**)
| |
| 68371 8073*2^32294+1 9726 MM 1997 Cullen
| |
| 68396 primV(67690) 9691 c8 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 68429 primV(73746) 9631 c8 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 68449 V(45953)/4561241750239 9591 c56 2012
| |
| Lucas cofactor, ECPP (**)
| |
| 68496 E(3308)/39308792292493140803643373186476368389461245
| |
| 9516 c8 2014 Euler irregular, ECPP (**)
| |
| 68506 Phi(5161,-100) 9505 c47 2012 Unique, ECPP (**)
| |
| 68572 primV(56360) 9417 c8 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 68598 primV(67359) 9385 c8 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 68609 primA(196035) 9359 c8 2014
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 68663 V(44507) 9302 CH3 2005 Lucas number (**)
| |
| 68766 V(43987)/175949 9188 c8 2014
| |
| Lucas cofactor, ECPP (**)
| |
| 68818 primV(47647) 9129 c8 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 68819 p(67230446) 9126 c56 2011
| |
| Partitions, ECPP (**)
| |
| 68837 primV(43931) 9094 c8 2014
| |
| Lucas primitive part, ECPP (**)
| |
| 69035 U(43399)/470400609575881344601538056264109423291827366228494341196421
| |
| 9010 c8 2013 Fibonacci cofactor, ECPP (**)
| |
| 69049 576024045*2^29874+1 9002 p364 2014
| |
| Cunningham chain 2nd kind (4p-3)
| |
| 69106 primU(44113) 8916 c8 2014
| |
| Fibonacci primitive part, ECPP (**)
| |
| 69107 U(42829)/107130175995197969243646842778153077
| |
| 8916 c8 2014 Fibonacci cofactor, ECPP (**)
| |
| 69163 (2^29473-1)/(5613392570256862943*24876264677503329001)
| |
| 8835 c59 2012 Mersenne cofactor, ECPP (**)
| |
| 69189 primA(159165) 8803 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 69208 U(42043)/1681721 8780 c56 2012
| |
| Fibonacci cofactor, ECPP (**)
| |
| 69291 (2^28771-1)/104726441 8653 c56 2012
| |
| Mersenne cofactor, ECPP (**)
| |
| 69294 (2^28759-1)/226160777 8649 c60 2012
| |
| Mersenne cofactor, ECPP (**)
| |
| 69382 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP (**)
| |
| 69399 p(60016427) 8622 c46 2011 Partitions, ECPP
| |
| 69566 Phi(4667,-100) 8593 c47 2009 Unique, ECPP (**)
| |
| 69643 U(40763)/643247084652261620737 8498 c8 2013
| |
| Fibonacci cofactor, ECPP (**)
| |
| 69763 primU(46711) 8367 c8 2013
| |
| Fibonacci primitive part, ECPP (**)
| |
| 69840 V(39769)/18139109172816581 8295 c8 2013
| |
| Lucas cofactor, ECPP (**)
| |
| 69847 2^27529-2^13765+1 8288 O 2000
| |
| Gaussian Mersenne norm 28
| |
| 69851 primB(148605) 8282 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 69852 903445893*6^10628+5 8280 c67 2013 Triplet (3) (**)
| |
| 69853 903445893*6^10628+1 8280 p364 2013 Triplet (2)
| |
| 69854 903445893*6^10628-1 8280 p364 2013 Triplet (1)
| |
| 69859 V(39607)/158429 8273 c46 2011
| |
| Lucas cofactor, ECPP (**)
| |
| 69900 p(54534155) 8219 c56 2011
| |
| Partitions, ECPP (**)
| |
| 69915 primB(103645) 8202 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 69931 379185609*2^27129-1 8176 L983 2009
| |
| Cunningham chain (4p+3)
| |
| 69933 379185609*2^27128-1 8175 L983 2009
| |
| Cunningham chain (2p+1)
| |
| 69934 379185609*2^27127-1 8175 L983 2009 Cunningham chain (p)
| |
| 69937 primU(62373) 8173 c8 2013
| |
| Fibonacci primitive part, ECPP (**)
| |
| 69945 primB(119945) 8165 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 69974 82659189*2^26999+1 8136 L983 2010
| |
| Cunningham chain 2nd kind (4p-3)
| |
| 69977 173028555*2^26995+1 8135 L983 2010
| |
| Cunningham chain 2nd kind (4p-3)
| |
| 69987 primB(99835) 8126 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 70021 primB(96545) 8070 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 70030 (2^26903-1)/1113285395642134415541632833178044793
| |
| 8063 c55 2011 Mersenne cofactor, ECPP (**)
| |
| 70061 p(52155970) 8037 c4 2014
| |
| Partitions, ECPP (**)
| |
| 70064 p(52126820) 8035 c4 2014
| |
| Partitions, ECPP (**)
| |
| 70065 p(52108003) 8034 c4 2014
| |
| Partitions, ECPP (**)
| |
| 70078 p(51983878) 8024 c4 2014
| |
| Partitions, ECPP (**)
| |
| 70079 p(51975657) 8023 c4 2014
| |
| Partitions, ECPP (**)
| |
| 70085 p(51911300) 8018 c4 2014
| |
| Partitions, ECPP (**)
| |
| 70099 18523#+1 8002 D 1989 Primorial (**)
| |
| 70110 42989535*2^26545+1 7999 L983 2010
| |
| Cunningham chain 2nd kind (4p-3)
| |
| 70128 primU(43121) 7975 c8 2013
| |
| Fibonacci primitive part, ECPP (**)
| |
| 70145 6*Bern(3458)/28329084584758278770932715893606309
| |
| 7945 c8 2013 Irregular, ECPP (**)
| |
| 70153 164210699973*2^26328-1 7937 p158 2006
| |
| Cunningham chain (4p+3)
| |
| 70155 164210699973*2^26327-1 7937 p158 2006
| |
| Cunningham chain (2p+1)
| |
| 70156 164210699973*2^26326-1 7937 p158 2006 Cunningham chain (p)
| |
| 70172 U(37987)/(16117960073*94533840409*1202815961509)
| |
| 7906 c39 2012 Fibonacci cofactor, ECPP (**)
| |
| 70216 U(37511) 7839 x13 2005
| |
| Fibonacci number (**)
| |
| 70247 primB(145545) 7824 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 70269 V(37357)/20210113386303842894568629
| |
| 7782 c8 2013 Lucas cofactor, ECPP (**)
| |
| 70281 U(37217)/4466041 7771 c46 2011
| |
| Fibonacci cofactor, ECPP (**)
| |
| 70293 -E(2762)/2670541 7760 c11 2004
| |
| Euler irregular, ECPP
| |
| 70377 V(36779) 7687 CH3 2005 Lucas number (**)
| |
| 70871 U(35999) 7523 p54 2001
| |
| Fibonacci number, cyclotomy (**)
| |
| 70890 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP (**)
| |
| 70981 V(35449) 7409 p12 2001 Lucas number
| |
| 71115 V(35107)/525110138418084707309 7317 c8 2013
| |
| Lucas cofactor, ECPP (**)
| |
| 71117 primA(161595) 7313 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 71217 U(34897)/4599458691503517435329 7272 c8 2013
| |
| Fibonacci cofactor, ECPP (**)
| |
| 71240 V(34759)/27112021 7257 c33 2005
| |
| Lucas cofactor, ECPP (**)
| |
| 71334 U(34807)/551750980997908879677508732866536453
| |
| 7239 c8 2013 Fibonacci cofactor, ECPP (**)
| |
| 71397 U(34607)/13088506284255296513 7213 c8 2013
| |
| Fibonacci cofactor, ECPP (**)
| |
| 71434 Phi(9455,-10) 7200 c33 2005 Unique, ECPP (**)
| |
| 71480 Phi(1479,-100000000) 7168 c47 2009 Unique, ECPP (**)
| |
| 71499 primB(134415) 7163 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 71968 U(33997)/8119544695419968014626314520991088099382355441843013
| |
| 7053 c8 2013 Fibonacci cofactor, ECPP (**)
| |
| 72123 primU(48965) 7012 c8 2013
| |
| Fibonacci primitive part, ECPP (**)
| |
| 72127 164084347*16229#+1 7009 p155 2009
| |
| Arithmetic progression (5,d=20333209*16229#)
| |
| 72225 V(33353)/279902102741094707003083072429
| |
| 6941 c8 2013 Lucas cofactor, ECPP (**)
| |
| 72234 primA(82975) 6935 p54 2001
| |
| Lucas Aurifeuillian primitive part (**)
| |
| 72245 23005*2^23005-1 6930 Y 1997 Woodall
| |
| 72258 22971*2^22971-1 6920 Y 1997 Woodall
| |
| 72264 2852851249*16001#/5+1 6913 p199 2008
| |
| Arithmetic progression (5,d=2653152*16001#)
| |
| 72269 2399771561*16001#/5+1 6913 p199 2008
| |
| Arithmetic progression (5,d=86574302*16001#)
| |
| 72271 1638535589*16001#/5+1 6913 p199 2008
| |
| Arithmetic progression (5,d=2003735*16001#)
| |
| 72278 Phi(2405,-10000) 6912 c47 2009 Unique, ECPP (**)
| |
| 72348 15877#-1 6845 CD 1992 Primorial (**)
| |
| 72353 Phi(10887,10) 6841 c33 2005 Unique, ECPP (**)
| |
| 72368 primU(58773) 6822 c8 2013
| |
| Fibonacci primitive part, ECPP (**)
| |
| 72436 primU(40295) 6737 p12 2001
| |
| Fibonacci primitive part
| |
| 72510 U(32077)/153087505413829037510511957221947361
| |
| 6669 c8 2013 Fibonacci cofactor, ECPP (**)
| |
| 72537 6*Bern(2974)/19622040971147542470479091157507
| |
| 6637 c8 2013 Irregular, ECPP (**)
| |
| 72762 primA(123405) 6502 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 72817 1797706581*2^21355-1 6438 L100 2012
| |
| Cunningham chain (4p+3)
| |
| 72819 1797706581*2^21354-1 6438 L100 2012
| |
| Cunningham chain (2p+1)
| |
| 72820 1797706581*2^21353-1 6438 L100 2012 Cunningham chain (p)
| |
| 72831 U(30757) 6428 p54 2001
| |
| Fibonacci number, cyclotomy (**)
| |
| 72837 V(31547)/2214098083841440850624929865754025869183488666508931309344798\
| |
| 2330346227824686184228977375762399380559492255026457207263132495525655\
| |
| 34024996670996378968020508259098756301
| |
| 6425 c8 2013 Lucas cofactor, ECPP (**)
| |
| 72879 U(30727)/2281521813578534245193 6400 c8 2013
| |
| Fibonacci cofactor, ECPP (**)
| |
| 72883 U(30671)/1141737296775689 6395 c41 2005
| |
| Fibonacci cofactor, ECPP (**)
| |
| 73040 Phi(7357,-10) 6301 c33 2004 Unique, ECPP (**)
| |
| 73103 Phi(6437,10) 6240 c47 2008 Unique, ECPP (**)
| |
| 73115 (2^20887-1)/(694257144641*3156563122511*28533972487913*189380444251383\
| |
| 6092687) 6229 c4 2009
| |
| Mersenne cofactor, ECPP (**)
| |
| 73176 primA(118275) 6170 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 73291 primU(43653) 6082 CH7 2010
| |
| Fibonacci primitive part (**)
| |
| 73610 primU(70455) 6019 c8 2013
| |
| Fibonacci primitive part, ECPP (**)
| |
| 73616 E(2220)/392431891068600713525 6011 c8 2013
| |
| Euler irregular, ECPP (**)
| |
| 73646 primB(83825) 5994 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 73708 primU(43359) 5939 c8 2013
| |
| Fibonacci primitive part, ECPP (**)
| |
| 73710 -E(2202)/53781055550934778283104432814129020709
| |
| 5938 c8 2013 Euler irregular, ECPP (**)
| |
| 73749 primU(28667) 5914 c8 2013
| |
| Fibonacci primitive part, ECPP (**)
| |
| 73818 U(28277)/347428330081374457 5892 c8 2013
| |
| Fibonacci cofactor, ECPP (**)
| |
| 73841 13649#+1 5862 D 1987 Primorial (**)
| |
| 73855 55339803*2^19402+1 5849 L983 2009
| |
| Cunningham chain 2nd kind (4p-3)
| |
| 73889 primB(104385) 5816 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 73911 V(27827)/3579579016301 5803 c4 2011
| |
| Lucas cofactor, ECPP (**)
| |
| 74021 274386*Bern(2622)/8518594882415401157891061256276973722693
| |
| 5701 c8 2013 Irregular, ECPP (**)
| |
| 74023 primB(72505) 5699 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 74034 18885*2^18885-1 5690 K 1987 Woodall
| |
| 74176 1963!-1 5614 CD 1992 Factorial (**)
| |
| 74181 13033#-1 5610 CD 1992 Primorial (**)
| |
| 74216 289*2^18502+1 5573 K 1984
| |
| Cullen, generalized Fermat
| |
| 74280 U(26591)/1929661069931436974692472737757606381
| |
| 5521 c8 2013 Fibonacci cofactor, ECPP (**)
| |
| 74306 primU(39489) 5502 c8 2013
| |
| Fibonacci primitive part, ECPP (**)
| |
| 74318 primU(27721) 5485 c8 2013
| |
| Fibonacci primitive part, ECPP (**)
| |
| 74322 V(26309)/42316339086094085101 5479 c8 2013
| |
| Lucas cofactor, ECPP (**)
| |
| 74433 E(2028)/11246153954845684745 5412 c55 2011
| |
| Euler irregular, ECPP (**)
| |
| 74696 V(25873)/34396575615094965590217427573609664640790259
| |
| 5364 c8 2013 Lucas cofactor, ECPP (**)
| |
| 74758 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\
| |
| 6621720796146291948744439) 5354 c63 2013 Irregular ECPP (**)
| |
| 74829 U(25561) 5342 p54 2001
| |
| Fibonacci number (**)
| |
| 74867 V(25763)/92864275685263243511877732271066626563444291249
| |
| 5338 c8 2013 Lucas cofactor, ECPP (**)
| |
| 74886 V(25577)/147374713548027019 5329 c4 2011
| |
| Lucas cofactor, ECPP (**)
| |
| 74926 primB(65305) 5298 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 74935 primB(63235) 5287 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 74948 (2^17683-1)/(234000819833373807217*62265855698776681155719328257)
| |
| 5274 c4 2009 Mersenne cofactor, ECPP (**)
| |
| 74965 -E(1990)/8338208577950624722417016286765473477033741642105671913
| |
| 5258 c8 2013 Euler irregular, ECPP (**)
| |
| 75186 primB(108465) 5177 c8 2013
| |
| Lucas Aurifeuillian primitive part, ECPP (**)
| |
| 75277 (51803036889*205881*4001#*(205881*4001#+1)+210)*(205881*4001#-1)/35+7
| |
| 5132 p179 2007
| |
| Arithmetic progression
| |
| (5,d=(681402540*205881*4001#*(205881*4001#+1)*(205881*4001#-1)/35))
| |
| 75371 (2^17029-1)/418879343 5118 c8 2006
| |
| Mersenne cofactor, ECPP (**)
| |
| 75499 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP
| |
| 76258 11549#+1 4951 D 1986 Primorial (**)
| |
| 76683 V(23663)/102462573963822806622784417315446994815407287584779
| |
| 4896 c8 2013 Lucas cofactor, ECPP (**)
| |
| 76772 E(1840)/31237282053878368942060412182384934425
| |
| 4812 c4 2011 Euler irregular, ECPP (**)
| |
| 76806 7911*2^15823-1 4768 K 1987 Woodall
| |
| 76824 V(22811)/(2469062641*84961206854418761)
| |
| 4741 c8 2004 Lucas cofactor, ECPP
| |
| 76862 primU(25493) 4695 c8 2007
| |
| Fibonacci primitive part, ECPP (**)
| |
| 77203 Phi(6685,-10) 4560 c8 2003 Unique, ECPP (**)
| |
| 77391 E(1736)/(55695515*75284987831*3222089324971117)
| |
| 4498 c4 2004 Euler irregular, ECPP (**)
| |
| 77414 U(21577)/(8626362776257*608114436652075009)
| |
| 4479 c8 2004 Fibonacci cofactor, ECPP (**)
| |
| 77439 primU(34593) 4444 c8 2007
| |
| Fibonacci primitive part, ECPP (**)
| |
| 77452 2^14699+2^7350+1 4425 O 2000
| |
| Gaussian Mersenne norm 27
| |
| 77461 primU(38181) 4414 c8 2007
| |
| Fibonacci primitive part, ECPP (**)
| |
| 77511 (2^14561-1)/8074991336582835391 4365 c8 2004
| |
| Mersenne cofactor, ECPP (**)
| |
| 77512 (2^14621-1)/(1958650799081*9787919624201558678734079)
| |
| 4365 c4 2008 Mersenne cofactor, ECPP (**)
| |
| 77516 Phi(3273,-100) 4361 c8 2003 Unique, ECPP (**)
| |
| 77518 (2^14479+1)/3 4359 c4 2004
| |
| Generalized Lucas number, Wagstaff, ECPP (**)
| |
| 77691 U(20749)/40143391315257666998313330569
| |
| 4308 c8 2013 Fibonacci cofactor, ECPP (**)
| |
| 77731 primU(21053) 4274 c8 2007
| |
| Fibonacci primitive part, ECPP (**)
| |
| 77738 primU(31209) 4264 c8 2007
| |
| Fibonacci primitive part, ECPP (**)
| |
| 77799 276474*Bern(2030)/(19426085*24191786327543)
| |
| 4200 c8 2003 Irregular, ECPP (**)
| |
| 77930 U(19777)/38707773384498015680717776815690169
| |
| 4099 c8 2013 Fibonacci cofactor, ECPP (**)
| |
| 77931 U(19709)/5442947509995472691549 4097 c8 2013
| |
| Fibonacci cofactor, ECPP (**)
| |
| 77964 V(19469) 4069 x25 2002
| |
| Lucas number, cyclotomy, APR-CL assisted (**)
| |
| 78007 1477!+1 4042 D 1984 Factorial (**)
| |
| 78331 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP (**)
| |
| 78349 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP (**)
| |
| 78437 -197676570*18851280661*Bern(1836)/(59789*3927024469727)
| |
| 3734 c8 2003 Irregular, ECPP (**)
| |
| 78439 12379*2^12379-1 3731 K 1984 Woodall
| |
| 78440 (2^12391+1)/3 3730 M 1996
| |
| Generalized Lucas number, Wagstaff
| |
| 78527 (2^12451-1)/(4980401*15289230353*1143390212315192593598809)
| |
| 3708 c4 2008 Mersenne cofactor, ECPP (**)
| |
| 78555 -E(1466)/167900532276654417372106952612534399239
| |
| 3682 c8 2013 Euler irregular, ECPP (**)
| |
| 78563 E(1468)/(95*217158949445380764696306893*597712879321361736404369071)
| |
| 3671 c4 2003 Euler irregular, ECPP (**)
| |
| 78586 642*Bern(1802)/15720728189 3641 c8 2003 Irregular, ECPP (**)
| |
| 78704 (2^11813-1)/(70879*207971134271377)
| |
| 3537 c8 2002 Mersenne cofactor, ECPP (**)
| |
| 78810 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) (**)
| |
| 78811 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) (**)
| |
| 78812 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) (**)
| |
| 78813 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1)
| |
| 78866 305136484659*2^11399+7 3443 c67 2013 Quadruplet (4) (**)
| |
| 78867 305136484659*2^11399+5 3443 c67 2013 Quadruplet (3) (**)
| |
| 78868 305136484659*2^11399+1 3443 p364 2013 Quadruplet (2)
| |
| 78869 305136484659*2^11399-1 3443 p364 2013 Quadruplet (1)
| |
| 79653 (2^11279+1)/3 3395 PM 1998
| |
| Cyclotomy, generalized Lucas number, Wagstaff (**)
| |
| 79852 722047383902589*2^11111+7 3360 c26 2013 Quadruplet (4)
| |
| 79853 722047383902589*2^11111+5 3360 c26 2013 Quadruplet (3)
| |
| 79854 722047383902589*2^11111+1 3360 L165 2013 Quadruplet (2)
| |
| 79855 722047383902589*2^11111-1 3360 L165 2013 Quadruplet (1)
| |
| 79940 (2^11117-1)/3581964369642706082212218539709275199722225571968754426223\
| |
| 37153 3284 c4 2011
| |
| Mersenne cofactor, ECPP (**)
| |
| 79987 (2^10691+1)/3 3218 c4 2004
| |
| Generalized Lucas number, Wagstaff, ECPP (**)
| |
| 80044 (2^10501+1)/3 3161 M 1996
| |
| Generalized Lucas number, Wagstaff (**)
| |
| 80160 2^10141+2^5071+1 3053 O 2000
| |
| Gaussian Mersenne norm 26
| |
| 80219 (2^10211-1)/306772303457009724362047724636324707614338377
| |
| 3030 c4 2010 Mersenne cofactor, ECPP (**)
| |
| 80225 43697976428649*2^9999+7 3024 c58 2012 Quadruplet (4)
| |
| 80226 43697976428649*2^9999+5 3024 c58 2012 Quadruplet (3)
| |
| 80227 43697976428649*2^9999+1 3024 p349 2012 Quadruplet (2)
| |
| 80228 43697976428649*2^9999-1 3024 p349 2012 Quadruplet (1)
| |
| 80231 (2^10169-1)/10402314702094700470118039921523041260063
| |
| 3022 c8 2002 Mersenne cofactor, ECPP
| |
| 80235 62037039993*7001#+7811555813 3021 x38 2013
| |
| Consecutive primes arithmetic progression (4,d=30), ECPP (**)
| |
| 80239 50946848056*7001#+7811555813 3021 x38 2013
| |
| Consecutive primes arithmetic progression (4,d=30), ECPP (**)
| |
| 80246 26997933312*7001#+7811555753 3020 x38 2013
| |
| Consecutive primes arithmetic progression (4,d=30), ECPP (**)
| |
| 80250 25506692100*7001#+7811555783 3020 x38 2013
| |
| Consecutive primes arithmetic progression (4,d=30), ECPP (**)
| |
| 80254 V(14449) 3020 DK 1995 Lucas number
| |
| 80258 3124777373*7001#+1 3019 p155 2012
| |
| Arithmetic progression (7,d=481789017*7001#)
| |
| 80259 2996180304*7001#+1 3019 p155 2012
| |
| Arithmetic progression (6,d=46793757*7001#)
| |
| 80261 2946259686*7001#+1 3019 p155 2012
| |
| Arithmetic progression (6,d=313558156*7001#)
| |
| 80262 2915000572*7001#+1 3019 p155 2012
| |
| Arithmetic progression (6,d=3093612*7001#)
| |
| 80266 2903168860*7001#+1 3019 p155 2012
| |
| Arithmetic progression (6,d=370654742*7001#)
| |
| 80270 2884761225*7001#+1 3019 p155 2012
| |
| Arithmetic progression (6,d=46112185*7001#)
| |
| 80775 U(14431) 3016 p54 2001
| |
| Fibonacci number (**)
| |
| 81005 (2^10007-1)/(14477908246561*136255313*10368448917257)
| |
| 2979 c8 2002 Mersenne cofactor, ECPP
| |
| 81122 V(13963) 2919 c11 2002 Lucas number, ECPP
| |
| 81161 (2^9697-1)/(724126946527*19092282046942032847)
| |
| 2888 c8 2002 Mersenne cofactor, ECPP
| |
| 81184 9531*2^9531-1 2874 K 1984 Woodall
| |
| 81217 9992783016*6599#-1 2836 p295 2011
| |
| Cunningham chain (8p+7)
| |
| 81229 -E(1174)/50550511342697072710795058639332351763
| |
| 2829 c8 2013 Euler irregular, ECPP (**)
| |
| 81245 6569#-1 2811 D 1992 Primorial
| |
| 81893 -E(1078)/361898544439043 2578 c4 2002
| |
| Euler irregular, ECPP (**)
| |
| 81904 198267970563*6007#+7811555753 2575 x38 2013
| |
| Consecutive primes arithmetic progression (4,d=30), ECPP (**)
| |
| 82133 V(12251) 2561 p54 2001 Lucas number (**)
| |
| 82807 46359065729523*2^8258+7 2500 c26 2011 Quadruplet (4)
| |
| 82808 46359065729523*2^8258+5 2500 c26 2011 Quadruplet (3)
| |
| 82809 46359065729523*2^8258+1 2500 L165 2011 Quadruplet (2)
| |
| 82810 46359065729523*2^8258-1 2500 L165 2011 Quadruplet (1)
| |
| 82885 974!-1 2490 CD 1992 Factorial
| |
| 83366 E(1028)/(6415*56837916301577) 2433 c4 2002
| |
| Euler irregular, ECPP (**)
| |
| 83594 E(1004)/(579851915*80533376783) 2364 c4 2002
| |
| Euler irregular, ECPP (**)
| |
| 83605 953477584*5501#-1 2355 p133 2005
| |
| Cunningham chain (8p+7)
| |
| 83831 7755*2^7755-1 2339 K 1984 Woodall
| |
| 84353 -2090369190*Bern(1236)/(103*939551962476779*157517441360851951)
| |
| 2276 c4 2002 Irregular, ECPP (**)
| |
| 84375 -36870*Bern(1228)/1043706675925609 2272 c4 2002 Irregular, ECPP (**)
| |
| 84595 V(10691) 2235 DK 1995 Lucas number
| |
| 85161 872!+1 2188 D 1983 Factorial
| |
| 85997 5045589688*4933#+1 2106 p295 2010
| |
| Cunningham chain 2nd kind (8p-7)
| |
| 86325 -E(902)/(9756496279*314344516832998594237)
| |
| 2069 c4 2002 Euler irregular, ECPP (**)
| |
| 86480 -E(886)/68689 2051 c4 2002
| |
| Euler irregular, ECPP (**)
| |
| 86590 4787#+1 2038 D 1984 Primorial
| |
| 86858 U(9677) 2023 c2 2000
| |
| Fibonacci number, ECPP
| |
| 88694 6611*2^6611+1 1994 K 1984 Cullen
| |
| 88765 4583#-1 1953 D 1992 Primorial
| |
| 88787 U(9311) 1946 DK 1995 Fibonacci number
| |
| 88807 4547#+1 1939 D 1984 Primorial
| |
| 89056 4297#-1 1844 D 1992 Primorial
| |
| 89106 125848198864*4253#+1 1829 p199 2010
| |
| Cunningham chain 2nd kind (8p-7)
| |
| 89107 113419228920*4253#+1 1829 p199 2010
| |
| Cunningham chain 2nd kind (8p-7)
| |
| 89110 45912427272*4253#+1 1829 p199 2010
| |
| Cunningham chain 2nd kind (8p-7)
| |
| 89355 11628008104*4127#+1 1770 p133 2005
| |
| Cunningham chain 2nd kind (8p-7)
| |
| 89360 V(8467) 1770 c2 2000
| |
| Lucas number, ECPP (**)
| |
| 89443 4093#-1 1750 CD 1992 Primorial
| |
| 89455 5795*2^5795+1 1749 K 1984 Cullen
| |
| 89461 (2^5807+1)/3 1748 PM 1998
| |
| Cyclotomy, generalized Lucas number, Wagstaff (**)
| |
| 89840 6*Bern(998)/(11511758102983*55034215982714323*70834556505031411*386984\
| |
| 89087506303607099*4712129605357293035277301907*36242949063949967876127\
| |
| 8968817) 1640 c62 2013 Irregular,ECPP (**)
| |
| 89913 V(7741) 1618 DK 1995 Lucas number
| |
| 89971 20438086160*3733#-1 1605 p295 2010
| |
| Cunningham chain (8p+7)
| |
| 89975 17758152104*3733#-1 1605 p295 2010
| |
| Cunningham chain (8p+7)
| |
| 89989 83*2^5318-1 1603 K 1984 Woodall
| |
| 91202 163252711105*3371#/2+4 1443 c67 2014 Quintuplet (5) (**)
| |
| 91203 163252711105*3371#/2+2 1443 c67 2014 Quintuplet (4) (**)
| |
| 91204 163252711105*3371#/2-2 1443 c67 2014 Quintuplet (3) (**)
| |
| 91205 163252711105*3371#/2-4 1443 c67 2014 Quintuplet (2) (**)
| |
| 91206 163252711105*3371#/2-8 1443 c67 2014 Quintuplet (1) (**)
| |
| 91486 4713*2^4713+1 1423 K 1984 Cullen
| |
| 91560 -54570*Bern(848)/(428478023*5051145078213134269)
| |
| 1418 c4 2002 Irregular, ECPP (**)
| |
| 91750 460226463*3301#+1 1402 p252 2010
| |
| Arithmetic progression (7,d=30017636*3301#) (**)
| |
| 91761 9039840848561*3299#/35+7 1401 c67 2013 Quintuplet (5) (**)
| |
| 91762 9039840848561*3299#/35+5 1401 c67 2013 Quintuplet (4) (**)
| |
| 91763 9039840848561*3299#/35+1 1401 p364 2013 Quintuplet (3)
| |
| 91764 9039840848561*3299#/35-1 1401 p364 2013 Quintuplet (2)
| |
| 91765 9039840848561*3299#/35-5 1401 c67 2013 Quintuplet (1) (**)
| |
| 91877 E(676)/878618128969410121818976030235415670049335313139115048927177891\
| |
| 58174298202475475590955674162377015
| |
| 1391 c8 2013 Euler irregular, ECPP (**)
| |
| 92259 3229#+1 1368 D 1984 Primorial
| |
| 92291 580182204072*3203#-1 1366 p295 2011
| |
| Cunningham chain (8p+7)
| |
| 92867 -E(638)/(7235862947323*11411779188663863*526900327479624797)
| |
| 1343 c4 2002 Euler irregular, ECPP (**)
| |
| 93192 1233917739*3121#+1 1335 p155 2010
| |
| Arithmetic progression (7,d=5893725*3121#)
| |
| 93466 1461401630*3109#+1 1328 p252 2009
| |
| Arithmetic progression (7,d=35777939*3109#) (**)
| |
| 94016 138*Bern(814)/(28409964671*335055893*351085907*520460183*30348030379*1\
| |
| 7043083582983) 1311 c4 2002 Irregular, ECPP (**)
| |
| 94889 699549860111847*2^4244+11 1293 c26 2013 Quintuplet (5)
| |
| 94890 699549860111847*2^4244+7 1293 c26 2013 Quintuplet (4)
| |
| 94891 699549860111847*2^4244+5 1293 c26 2013 Quintuplet (3)
| |
| 94892 699549860111847*2^4244+1 1293 p371 2013 Quintuplet (2)
| |
| 94893 699549860111847*2^4244-1 1293 p371 2013 Quintuplet (1)
| |
| 94968 833000864*3011#+1 1290 p155 2006
| |
| Arithmetic progression (7,d=114858412*3011#)
| |
| 96681 546!-1 1260 D 1992 Factorial
| |
| 97966 V(5851) 1223 DK 1995 Lucas number
| |
| 98529 406463527990*2801#+1633050403 1209 x38 2013
| |
| Consecutive primes arithmetic progression (5,d=30)
| |
| 99784 68002763264*2749#-1 1185 p35 2012
| |
| Cunningham chain (16p+15)
| |
| 101995 E(576)/103578407399870807786503857073455806041088176158903345179750769\
| |
| 398899240791530780628185 1143 c8 2013
| |
| Euler irregular, ECPP (**)
| |
| 102472 1290733709840*2677#+1 1141 p295 2011
| |
| Cunningham chain 2nd kind (16p-15)
| |
| 102989 U(5387) 1126 WM 1990 Fibonacci number
| |
| 103480 720128166480*2621#+1 1117 p199 2010
| |
| Cunningham chain 2nd kind (16p-15) (**)
| |
| 103489 566650659276*2621#+1615853 1117 x38 2013 Quintuplet (5)
| |
| 103490 566650659276*2621#+1615849 1117 x38 2013 Quintuplet (4)
| |
| 103491 566650659276*2621#+1615847 1117 x38 2013 Quintuplet (3)
| |
| 103492 566650659276*2621#+1615843 1117 x38 2013 Quintuplet (2)
| |
| 103493 566650659276*2621#+1615841 1117 x38 2013 Quintuplet (1)
| |
| 103495 554729409262*2621#+1615853 1117 x38 2013 Quintuplet (5)
| |
| 103496 554729409262*2621#+1615849 1117 x38 2013 Quintuplet (4)
| |
| 103497 554729409262*2621#+1615847 1117 x38 2013 Quintuplet (3)
| |
| 103498 554729409262*2621#+1615843 1117 x38 2013 Quintuplet (2)
| |
| 103499 554729409262*2621#+1615841 1117 x38 2013 Quintuplet (1)
| |
| 105852 993530619517*2503#+1633050373 1073 x38 2013
| |
| Consecutive primes arithmetic progression (5,d=30)
| |
| 105866 495690450643*2503#+1633050403 1072 x38 2013
| |
| Consecutive primes arithmetic progression (5,d=30)
| |
| 105892 150822742857*2503#+1633050373 1072 x38 2013
| |
| Consecutive primes arithmetic progression (5,d=30)
| |
| 105904 94807777362*2503#+1633050373 1072 x38 2013
| |
| Consecutive primes arithmetic progression (5,d=30)
| |
| 106287 (2^3539+1)/3 1065 M 1989
| |
| First titanic by ECPP, generalized Lucas number, Wagstaff
| |
| 106504 -E(510) 1062 c4 2002
| |
| Euler irregular, ECPP (**)
| |
| 106762 2968802755*2459#+1 1057 p155 2009
| |
| Arithmetic progression (8,d=359463429*2459#)
| |
| 106956 469!-1 1051 BC 1981 Factorial
| |
| 107587 6179783529*2411#+1 1037 p102 2003
| |
| Arithmetic progression (8,d=176836494*2411#)
| |
| 107920 R(1031) 1031 WD 1985 Repunit (**)
| |
| 108261 51800236080*2377#-1 1017 p295 2011
| |
| Cunningham chain (16p+15)
| |
| 108342 418059269664*2371#+1 1015 p308 2011
| |
| Cunningham chain 2nd kind (16p-15)
| |
| 108367 116040452086*2371#+1 1014 p308 2012
| |
| Arithmetic progression (9,d=6317280828*2371#)
| |
| 108368 115248484057*2371#+1 1014 p308 2013
| |
| Arithmetic progression (8,d=7327002535*2371#)
| |
| 108370 113236255068*2371#+1 1014 p308 2013
| |
| Arithmetic progression (8,d=6601354956*2371#)
| |
| 108371 112929231161*2371#+1 1014 p308 2013
| |
| Arithmetic progression (8,d=6982118533*2371#)
| |
| 108517 97336164242*2371#+1 1014 p308 2013
| |
| Arithmetic progression (9,d=6350457699*2371#)
| |
| 108641 93537753980*2371#+1 1014 p308 2013
| |
| Arithmetic progression (9,d=3388165411*2371#)
| |
| 108673 92836168856*2371#+1 1014 p308 2013
| |
| Arithmetic progression (9,d=127155673*2371#)
| |
| 110286 69318339141*2371#+1 1014 p308 2011
| |
| Arithmetic progression (9,d=1298717501*2371#)
| |
| 111473 22260095095904*2347#-1 1006 p364 2014
| |
| Cunningham chain (16p+15)
| |
| 112593 3885399969056*2347#-1 1006 p364 2014
| |
| Cunningham chain (16p+15)
| |
| 112897 1901797841760*2347#-1 1005 p364 2014
| |
| Cunningham chain (16p+15)
| |
| 113540 V(4793) 1002 DK 1995 Lucas number
| |
| 113583 V(4787) 1001 DK 1995 Lucas number
| |
| ----- -------------------------------- ------- ----- ---- --------------
| |
| Vincent Flood © 1996-2014 (all rights reserved)
| |