User talk:Ordinate
-------------------------------- ------- ----- ---- --------------
rank description digits who year comment
-------------------------------- ------- ----- ---- --------------
1 2^57885161-1 17425170 G13 2013 Mersenne 48?? (**) 2 2^43112609-1 12978189 G10 2008 Mersenne 47?? (**) 3 2^42643801-1 12837064 G12 2009 Mersenne 46?? (**) 4 2^37156667-1 11185272 G11 2008 Mersenne 45? (**) 5 2^32582657-1 9808358 G9 2006 Mersenne 44? (**) 6 2^30402457-1 9152052 G9 2005 Mersenne 43? (**) 7 2^25964951-1 7816230 G8 2005 Mersenne 42 (**) 8 2^24036583-1 7235733 G7 2004 Mersenne 41 (**) 9 2^20996011-1 6320430 G6 2003 Mersenne 40 (**) 10 2^13466917-1 4053946 G5 2001 Mersenne 39 (**) 11 19249*2^13018586+1 3918990 SB10 2007 (**) 12 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) (**) 13 475856^524288+1 2976633 L3230 2012 Generalized Fermat 14 356926^524288+1 2911151 L3209 2012 Generalized Fermat 15 341112^524288+1 2900832 L3184 2012 Generalized Fermat (**) 16 27653*2^9167433+1 2759677 SB8 2005 (**) 17 90527*2^9162167+1 2758093 L1460 2010 18 75898^524288+1 2558647 p334 2011 Generalized Fermat (**) 19 28433*2^7830457+1 2357207 SB7 2004 20 502573*2^7181987-1 2162000 L3964 2014 21 402539*2^7173024-1 2159301 L3961 2014 22 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) (**) 23 33661*2^7031232+1 2116617 SB11 2007 (**) 24 2^6972593-1 2098960 G4 1999 Mersenne 38 (**) 25 40597*2^6808509-1 2049571 L3749 2013 26 6679881*2^6679881+1 2010852 L917 2009 Cullen (**) 27 37*2^6660841-1 2005115 L3933 2014 (**) 28 304207*2^6643565-1 1999918 L3547 2013 29 398023*2^6418059-1 1932034 L3659 2013 30 1582137*2^6328550+1 1905090 L801 2009 Cullen (**) 31 3*2^6090515-1 1833429 L1353 2010 (**) 32 7*2^5775996+1 1738749 L3325 2012 (**) 33 9*2^5642513+1 1698567 L3432 2013 (**) 34 252191*2^5497878-1 1655032 L3183 2012 (**) 35 258317*2^5450519+1 1640776 g414 2008 36 773620^262144+1 1543643 L3118 2012 Generalized Fermat (**) 37 51*2^5085142-1 1530782 L760 2014 38 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) (**) 39 676754^262144+1 1528413 L2975 2012 Generalized Fermat (**) 40 5359*2^5054502+1 1521561 SB6 2003 41 13*2^4998362+1 1504659 L3917 2014 42 525094^262144+1 1499526 p338 2012 Generalized Fermat (**) 43 265711*2^4858008+1 1462412 g414 2008 44 1271*2^4850526-1 1460157 L1828 2012 45 361658^262144+1 1457075 p332 2011 Generalized Fermat (**) 46 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40? (**) 47 653*10^1435026-1 1435029 p355 2014 48 9*2^4683555-1 1409892 L1828 2012 49 11*2^4643238-1 1397755 L2484 2014 50 27*2^4583717-1 1379838 L2992 2014 51 121*2^4553899-1 1370863 L3023 2012 (**) 52 27*2^4542344-1 1367384 L1204 2014 53 145310^262144+1 1353265 p314 2011 Generalized Fermat (**) 54 36772*6^1723287-1 1340983 L1301 2014 55 353159*2^4331116-1 1303802 L2408 2011 (**) 56 141941*2^4299438-1 1294265 L689 2011 (**) 57 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) (**) 58 3*2^4235414-1 1274988 L606 2008 (**) 59 109208*5^1816285+1 1269534 L3523 2014 60 191*2^4203426-1 1265360 L2484 2012 61 325918*5^1803339-1 1260486 L3567 2014 62 133778*5^1785689+1 1248149 L3903 2014 63 24032*5^1768249+1 1235958 L3925 2014 64 40734^262144+1 1208473 p309 2011 Generalized Fermat (**) 65 9*2^4005979-1 1205921 L1828 2012 66 138172*5^1714207-1 1198185 L3904 2014 67 22478*5^1675150-1 1170884 L3903 2014 68 27*2^3855094-1 1160501 L3033 2012 (**) 69 24518^262144+1 1150678 g413 2008 Generalized Fermat 70 123547*2^3804809-1 1145367 L2371 2011 (**) 71 326834*5^1634978-1 1142807 L3523 2014 72 415267*2^3771929-1 1135470 L2373 2011 (**) 73 11*2^3771821+1 1135433 p286 2013 (**) 74 938237*2^3752950-1 1129757 L521 2007 Woodall (**) 75 207394*5^1612573-1 1127146 L3869 2014 76 104944*5^1610735-1 1125861 L3849 2014 77 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39? (**) 78 330286*5^1584399-1 1107453 L3523 2014 79 15*2^3668194-1 1104238 L3665 2013 80 65531*2^3629342-1 1092546 L2269 2011 (**) 81 113*2^3628034-1 1092150 L2484 2014 82 485767*2^3609357-1 1086531 L622 2008 83 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 84 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 85 35*2^3570777+1 1074913 L2891 2014 (**) 86 33*2^3570132+1 1074719 L2552 2014 (**) 87 5*2^3569154-1 1074424 L503 2009 88 22934*5^1536762-1 1074155 L3789 2014 89 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique (**) 90 93*2^3544744+1 1067077 L1728 2014 91 178658*5^1525224-1 1066092 L3789 2014 92 1019*2^3536312-1 1064539 L1828 2012 93 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 94 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) (**) 95 428639*2^3506452-1 1055553 L2046 2011 (**) 96 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 97 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) (**) 98 87*2^3496188+1 1052460 L1576 2014 99 51*2^3490971+1 1050889 L1823 2014 (**) 100 59912*5^1500861+1 1049062 L3772 2014 101 37292*5^1487989+1 1040065 L3553 2013 102 1273*2^3448551-1 1038121 L1828 2012 103 191249*2^3417696-1 1028835 L1949 2010 (**) 104 113*2^3409934-1 1026495 L2484 2014 105 59*2^3408416-1 1026038 L426 2010 106 67*2^3391385-1 1020911 L1959 2014 107 173198*5^1457792-1 1018959 L3720 2013 108 179*2^3371145+1 1014819 L3763 2014 109 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat (**) 110 1087*2^3336385-1 1004355 L1828 2012 111 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 112 129*2^3328805+1 1002073 L3859 2014 (**) 113 464253*2^3321908-1 1000000 L466 2013 114 191273*2^3321908-1 1000000 L466 2013 115 3139*2^3321905-1 999997 L185 2008 116 4847*2^3321063+1 999744 SB9 2005 117 49*2^3309087-1 996137 L1959 2013 118 245114*5^1424104-1 995412 L3686 2013 119 175124*5^1422646-1 994393 L3686 2013 120 5*2^3264650-1 982759 L384 2013 121 223*2^3264459-1 982703 L1884 2012 122 9*2^3259381-1 981173 L1828 2011 123 33*2^3242126-1 975979 L3345 2014 124 39*2^3240990+1 975637 L3432 2014 125 211195*2^3224974+1 970820 L2121 2013 126 94373*2^3206717+1 965323 L2785 2013 127 113983*2^3201175-1 963655 L613 2008 128 33*2^3176269+1 956154 L3432 2013 129 1087*2^3164677-1 952666 L1828 2012 130 15*2^3162659+1 952057 p286 2012 (**) 131 19*2^3155009-1 949754 L1828 2012 132 69*2^3140225-1 945304 L3764 2014 133 3*2^3136255-1 944108 L256 2007 134 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen (**) 135 1019*2^3103680-1 934304 L1828 2012 136 256612*5^1335485-1 933470 L259 2013 137 69*2^3097340-1 932395 L3764 2014 138 5*2^3090860-1 930443 L1862 2012 139 60849*2^3067914+1 923539 L591 2014 140 21*2^3065701+1 922870 p286 2012 (**) 141 43*2^3063674+1 922260 L3432 2013 142 5*2^3059698-1 921062 L503 2008 143 383731*2^3021377-1 909531 L466 2011 144 46821*2^3021380-374567 909531 p363 2013 (**) 145 2^3021377-1 909526 G3 1998 Mersenne 37 (**) 146 7*2^3015762+1 907836 g279 2008 (**) 147 268514*5^1292240-1 903243 L3562 2013 148 7*10^902708+1 902709 p342 2013 149 43*2^2994958+1 901574 L3222 2013 150 1095*2^2992587-1 900862 L1828 2011 151 15*2^2988834+1 899730 p286 2012 (**) 152 39*2^2978894+1 896739 L2719 2013 153 4348099*2^2976221-1 895939 L466 2008 154 18976*2^2976221-18975 895937 p373 2014 155 2^2976221-1 895932 G2 1997 Mersenne 36 (**) 156 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen (**) 157 198677*2^2950515+1 888199 L2121 2012 158 17*2^2946584-1 887012 L3519 2013 159 33*2^2939063-1 884748 L3345 2013 160 7019*10^881309-1 881313 L3564 2013 161 25*2^2927222+1 881184 L1935 2013 Generalized Fermat (**) 162 97366*5^1259955-1 880676 L3567 2013 163 243944*5^1258576-1 879713 L3566 2013 164 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] (**) 165 427194*113^427194+1 877069 p310 2012 Generalized Cullen (**) 166 63*2^2898957+1 872675 L3262 2013 (**) 167 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) (**) 168 51*2^2881227+1 867338 L3512 2013 169 41*2^2872058-1 864578 L2484 2013 170 1207*2^2861901-1 861522 L1828 2011 171 222361*2^2854840+1 859398 g403 2006 172 95*2^2837909+1 854298 L3539 2013 173 84466*5^1215373-1 849515 L3562 2013 174 97*2^2820650+1 849103 L2163 2013 175 107*2^2819922-1 848884 L2484 2013 176 97*2^2818306+1 848397 L3262 2013 177 177*2^2816050+1 847718 L129 2012 178 96*10^846519-1 846521 L2425 2011 Near-repdigit 179 63*2^2807130+1 845033 L3262 2013 (**) 180 150344*5^1205508-1 842620 L3547 2013 181 400254*127^400254+1 842062 g407 2013 Generalized Cullen 182 43*2^2795582+1 841556 L2842 2013 (**) 183 15*2^2785940+1 838653 p286 2012 (**) 184 57*2^2765963+1 832640 L3262 2013 185 77*2^2762047+1 831461 L3430 2013 186 7*10^830865+1 830866 p342 2014 187 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 188 17*2^2721830-1 819354 p279 2010 189 165*2^2717378-1 818015 L2055 2012 190 45*2^2711732+1 816315 L1349 2012 191 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 192 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) (**) 193 1372930^131072+1 804474 g236 2003 Generalized Fermat 194 1361244^131072+1 803988 g236 2004 Generalized Fermat 195 256*11^771408+1 803342 L3802 2014 Generalized Fermat 196 1396*5^1146713-1 801522 L3547 2013 197 69*2^2649939-1 797713 L3764 2014 198 1176694^131072+1 795695 g236 2003 Generalized Fermat 199 13*2^2642943-1 795607 L1862 2012 200 342673*2^2639439-1 794556 L53 2007 201 92182*5^1135262+1 793520 L3547 2013 202 87*2^2630468+1 791852 L3262 2013 203 17152*5^1131205-1 790683 L3552 2013 204 1063730^131072+1 789949 g260 2013 Generalized Fermat 205 1243*2^2623707-1 789818 L1828 2011 206 87*2^2609046+1 785404 L2520 2013 207 329584*5^1122935-1 784904 L3553 2013 208 13*2^2606075-1 784508 L1862 2011 209 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 210 334310*211^334310-1 777037 p350 2012 Generalized Woodall 211 51*2^2578652+1 776254 L3262 2013 212 75*2^2562382-1 771356 L2055 2011 213 147559*2^2562218+1 771310 L764 2012 214 404*12^714558+1 771141 L1471 2011 215 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) (**) 216 689186^131072+1 765243 g429 2013 Generalized Fermat 217 123287*2^2538167+1 764070 L3054 2012 218 305716*5^1093095-1 764047 L3547 2013 219 83*2^2537641+1 763908 L1300 2013 220 87*2^2518122-1 758033 L2484 2014 221 33*2^2513872-1 756753 L3345 2013 222 45*2^2507894+1 754953 L1349 2012 (**) 223 130484*5^1080012-1 754902 L3547 2013 224 572186^131072+1 754652 g0 2004 Generalized Fermat 225 165*2^2500130-1 752617 L2055 2011 226 33*2^2499883-1 752542 L3345 2013 227 57*2^2492031+1 750178 L1230 2013 228 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 229 22*30^504814-1 745673 p355 2014 230 11*2^2476839+1 745604 L2691 2011 (**) 231 1061*2^2474282-1 744837 L1828 2012 232 81*2^2468789+1 743182 g418 2009 233 55154*5^1063213+1 743159 L3543 2013 234 26773*2^2465343-1 742147 L197 2006 235 103*2^2462567-1 741309 L2484 2014 236 5*2^2460482-1 740680 L503 2008 237 41676*7^875197-1 739632 L2777 2012 Generalized Woodall (**) 238 65*2^2450614-1 737711 L2074 2014 239 75*2^2446050+1 736337 L3035 2013 (**) 240 115*26^520277-1 736181 L1471 2014 241 114986*5^1052966-1 735997 L3528 2013 242 386892^131072+1 732377 p259 2009 Generalized Fermat 243 69*2^2428251-1 730979 L384 2014 244 23*2^2425641+1 730193 L2675 2011 (**) 245 69*2^2410035-1 725495 L2074 2013 246 243686*5^1036954-1 724806 L3549 2013 247 15*2^2393365+1 720476 L1349 2010 (**) 248 273*2^2388104+1 718894 L3668 2014 249 99*2^2383846+1 717612 L1780 2013 (**) 250 737*2^2382804-1 717299 L191 2007 251 111*2^2382772+1 717288 L3810 2014 252 61*2^2381887-1 717022 L2432 2012 253 147*2^2375995+1 715248 L1130 2014 (**) 254 1117*2^2373977-1 714642 L1828 2012 255 99*2^2370390+1 713561 L1204 2013 256 125*2^2369461+1 713281 L3035 2014 257 1183953*2^2367907-1 712818 L447 2007 Woodall (**) 258 "57671892869766803925...(712708 other digits)...06520121133805600769" 712748 p360 2013 259 119878*5^1019645-1 712707 L3528 2013 260 150209!+1 712355 p3 2011 Factorial 261 281*2^2363327+1 711435 L1741 2014 262 2683*2^2360743-1 710658 L1959 2012 263 155*2^2357111+1 709564 L3975 2014 (**) 264 33706*6^910462+1 708482 L587 2014 265 179*2^2352291+1 708113 L1741 2014 266 45*2^2347187+1 706576 L1349 2012 (**) 267 127*2^2346377-1 706332 L282 2009 268 33*2^2345001+1 705918 L2322 2013 (**) 269 83*2^2342345+1 705119 L2626 2013 270 277*2^2340182+1 704468 L1158 2014 271 159*2^2339566+1 704282 L3035 2014 272 275293*2^2335007-1 702913 L193 2006 273 228188^131072+1 702323 g124 2010 Generalized Fermat 274 147855!-1 700177 p362 2013 Factorial 275 15*2^2323205-1 699356 L2484 2011 276 165*2^2319575+1 698264 L2627 2014 277 125098*6^896696+1 697771 L587 2014 278 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 279 1983*366^271591-1 696222 L2054 2012 280 3*2^2312734-1 696203 L158 2005 281 450457*2^2307905-1 694755 L172 2006 282 189*2^2299959+1 692359 L2627 2014 283 1087*2^2293345-1 690369 L1828 2011 284 97768*5^987383-1 690157 L1016 2013 285 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) (**) 286 109*2^2280194+1 686409 L2520 2014 287 105*2^2280078-1 686374 L2444 2014 288 155877*2^2273465-1 684387 L541 2014 289 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 290 217*2^2264546+1 681699 L3179 2014 (**) 291 93*2^2263894+1 681502 L2826 2013 (**) 292 217499*28^470508-1 680905 p366 2013 293 129*2^2255199+1 678885 L3049 2014 (**) 294 65*2^2250637+1 677512 L3487 2013 295 187*2^2249974+1 677312 L2322 2014 296 141*2^2249967+1 677310 L3877 2014 297 221*2^2248363+1 676828 L1130 2014 298 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen (**) 299 197*2^2244347+1 675619 L1129 2014 300 35*2^2241049+1 674625 L2742 2013 (**) 301 831*2^2235253+1 672882 L3432 2013 302 185*2^2235003+1 672806 L2322 2014 303 103*2^2234536+1 672665 L3865 2014 304 267*2^2233376+1 672316 L1792 2014 305 103*2^2232551-1 672067 L2484 2013 306 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) (**) 307 130816^131072+1 670651 g308 2003 Generalized Fermat 308 213*2^2226329+1 670195 L2125 2014 (**) 309 84363*2^2222321+1 668991 L541 2014 310 27*2^2218064+1 667706 L690 2009 (**) 311 67*2^2215581-1 666959 L268 2010 312 33*2^2215291-1 666871 L3345 2013 313 157533*2^2214598-1 666666 L3494 2013 314 33*2^2212971-1 666173 L3345 2013 315 101*2^2212769+1 666112 L1741 2014 316 3*10^665829+1 665830 p300 2012 317 165*2^2207550-1 664541 L2055 2011 318 19*2^2206266+1 664154 p189 2006 (**) 319 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) (**) 320 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique 321 173*2^2199301+1 662058 L1204 2014 322 5077*2^2198565-1 661838 L251 2008 323 114487*2^2198389-1 661787 L179 2006 324 1035*2^2197489+1 661514 L2517 2014 325 903*2^2197294+1 661455 L2322 2014 326 404882*43^404882-1 661368 p310 2011 Generalized Woodall (**) 327 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 328 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 329 1073*2^2193069+1 660183 L2487 2014 330 819*2^2190853+1 659516 L3234 2014 331 1179*2^2189870+1 659220 L2517 2014 332 269*2^2189235+1 659028 L1204 2014 333 39*2^2188855+1 658913 p286 2013 (**) 334 433*2^2188076+1 658680 L3855 2014 335 815*2^2185439+1 657886 L3035 2014 336 249*2^2185003+1 657754 L1300 2014 337 585*2^2184510+1 657606 L3838 2014 338 1033*2^2183858+1 657410 L3865 2014 339 1035*2^2183770+1 657384 L3514 2014 340 1179*2^2182691+1 657059 L2163 2014 341 525*2^2180848+1 656504 L3797 2014 342 1107*2^2180142+1 656292 L1741 2014 343 447*2^2180102+1 656279 L3760 2014 344 995*2^2178819+1 655893 L1741 2014 345 196597*2^2178109-1 655682 L175 2006 346 879*2^2177186+1 655402 L2981 2014 347 70082*5^936972-1 654921 L3523 2013 348 699*2^2175031+1 654753 L3865 2014 349 69*2^2174213-1 654506 L2055 2012 350 1069*2^2174122+1 654479 L3865 2014 351 793*2^2173720+1 654358 L2322 2014 352 651*2^2173159+1 654189 L3864 2014 353 1011*2^2172063+1 653860 L2826 2014 354 1105*2^2171956+1 653827 L3035 2014 355 739*2^2170786+1 653475 L2121 2014 356 701*2^2169041+1 652950 L3863 2014 357 295*2^2168448+1 652771 L1935 2014 358 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) (**) 359 359*2^2165551+1 651899 L3838 2014 360 1059*2^2164149+1 651477 L2322 2014 361 329*2^2163717+1 651347 L2117 2014 362 559*2^2163382+1 651246 L1741 2014 363 775*2^2162344+1 650934 L3588 2014 364 21*2^2160479-1 650371 L2074 2012 365 102976*5^929801-1 649909 L3313 2013 366 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 367 617*2^2156699+1 649234 L1675 2014 368 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 369 483*2^2155456+1 648860 L3760 2014 370 105*2^2155392+1 648840 L3580 2014 371 31340*6^833096+1 648280 p271 2013 372 427*2^2153306+1 648213 L3838 2014 373 261*2^2152805+1 648062 L1125 2014 374 371*2^2150871+1 647480 L2545 2014 375 111*2^2150802-1 647458 L2484 2013 376 357*2^2148518+1 646771 L1741 2014 377 993*2^2148205+1 646678 L1741 2014 378 67*2^2148060+1 646633 L3276 2013 379 243*2^2147387-1 646431 L2444 2014 380 693*2^2147024+1 646322 L3862 2014 381 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 382 509*2^2144181+1 645466 L3035 2014 383 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) (**) 384 161*2^2142431+1 644939 L3105 2014 385 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat (**) 386 23*2^2141626-1 644696 L545 2008 387 519*2^2140311+1 644301 L2659 2014 388 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) (**) 389 315*2^2139665+1 644106 L3838 2014 (**) 390 193*2^2139400+1 644026 L3538 2014 391 1113*2^2139060+1 643925 L3914 2014 392 292402*159^292402+1 643699 g407 2012 Generalized Cullen 393 1051*2^2137440+1 643437 L3865 2014 394 1185*2^2137344+1 643408 L3877 2014 395 513*2^2135642+1 642896 L3843 2014 396 915*2^2135151+1 642748 L2322 2014 397 61*2^2134577-1 642574 L2055 2011 398 711*2^2132477+1 641943 L2125 2014 399 75*2^2130432-1 641326 L2055 2011 400 1145*2^2130307+1 641290 L3909 2014 401 110488*5^917100+1 641031 L3354 2013 402 37*2^2128328+1 640693 L3422 2013 403 103*2^2128242+1 640667 L3787 2014 (**) 404 253*2^2126968+1 640284 L1935 2014 405 583*2^2126166+1 640043 L1741 2014 406 999*2^2125575+1 639865 L1741 2014 407 587*2^2124947+1 639676 L3838 2014 408 451*2^2124636+1 639582 L1741 2014 409 887*2^2124027+1 639399 L3865 2014 410 693*2^2121393+1 638606 L3278 2014 411 8331405*2^2120345-1 638295 L2055 2013 412 975*2^2119209+1 637949 L1158 2014 413 33*2^2118570-1 637755 L3345 2013 414 254*5^911506-1 637118 p292 2010 415 1139*2^2115949+1 636968 L3865 2014 416 771*2^2115741+1 636905 L1675 2014 (**) 417 411*2^2115559+1 636850 L2840 2014 418 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 419 929*2^2114679+1 636585 L3035 2014 420 1065*2^2113463+1 636219 L2826 2014 421 591*2^2111001+1 635478 L1360 2014 422 1051*2^2109344+1 634979 L3035 2014 423 433*2^2109146+1 634919 L1935 2014 424 519*2^2108910+1 634848 L1356 2014 425 1047*2^2108751+1 634801 L3824 2014 426 765*2^2106027+1 633981 L3838 2014 427 503*2^2106013+1 633976 L1741 2014 428 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 429 113*2^2104825+1 633618 L3785 2014 430 381*2^2103999+1 633370 L2322 2014 431 57*2^2103370-1 633180 L2055 2011 432 539*2^2102167+1 632819 L3125 2014 433 687*2^2100243+1 632239 L3867 2014 434 329*2^2099771+1 632097 L2507 2014 435 35*2^2099769+1 632095 L3432 2013 (**) 436 405*2^2099716+1 632081 L3154 2014 437 575*2^2098483+1 631710 L3168 2014 438 907*2^2095896+1 630931 L1129 2014 439 103*2^2093350+1 630164 L3432 2013 440 4001*2^2093286-1 630146 L1959 2014 441 369*2^2093022+1 630065 L3514 2014 442 165*2^2090645+1 629350 L1209 2014 443 1119*2^2090509+1 629309 L2520 2014 444 941*2^2090243+1 629229 L1356 2014 445 62722^131072+1 628808 g308 2003 Generalized Fermat 446 401*2^2088713+1 628768 L3035 2014 447 819*2^2088423+1 628681 L3890 2014 448 1009*2^2087690+1 628461 L3728 2014 449 85*2^2087651-1 628448 L2338 2013 450 467*2^2085835+1 627902 L3625 2014 451 563528*13^563528-1 627745 p262 2009 Generalized Woodall (**) 452 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen (**) 453 247*2^2082202+1 626808 L3294 2014 454 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 455 655*2^2080562+1 626315 L3859 2014 456 201*2^2080464+1 626285 L1741 2014 457 269328*211^269328+1 626000 p354 2012 Generalized Cullen 458 153*2^2079401+1 625965 L3601 2014 459 279*2^2079167+1 625895 L2413 2014 460 643*2^2078306+1 625636 L3035 2014 461 79*2^2078162+1 625591 L2117 2013 (**) 462 239*2^2076663+1 625141 L2413 2014 463 1003*2^2076535-1 625103 L51 2008 464 2186*7^739474-1 624932 p258 2011 465 73*2^2075936+1 624921 L3464 2013 466 807*2^2075519+1 624797 L3555 2014 (**) 467 65*2^2073229+1 624106 L1480 2013 (**) 468 693*2^2072564+1 623907 L3290 2014 469 375*2^2071598+1 623616 L2413 2014 470 73*2^2071592+1 623614 L1480 2013 471 125*2^2071555+1 623603 L3432 2013 472 1107*2^2071480+1 623581 L2520 2014 473 299*2^2070979+1 623430 L1741 2014 474 891*2^2069024+1 622842 L2520 2014 475 943*2^2068944+1 622818 L1741 2014 476 579*2^2068647+1 622728 L2967 2014 477 911*2^2068497+1 622683 L1741 2014 478 1005*2^2067272+1 622314 L3895 2014 479 393*2^2066540+1 622094 L3700 2014 480 951*2^2065180+1 621685 L1403 2014 481 915*2^2064663+1 621529 L3035 2014 482 9*2^2060941-1 620407 L503 2008 483 659*2^2058623+1 619711 L3860 2014 484 575*2^2056081+1 618945 L1935 2014 485 1095*2^2055975+1 618914 L3518 2014 486 3*10^618853+1 618854 p300 2012 487 819*2^2054470+1 618461 L2826 2014 488 969*2^2054054+1 618335 L3668 2014 489 675*2^2053578+1 618192 L1792 2014 490 739*2^2051658+1 617614 L3838 2014 491 71*2^2051313+1 617509 L1480 2013 492 779*2^2050881+1 617380 L3453 2014 493 75*2^2050637-1 617306 L2055 2011 494 935*2^2050113+1 617149 L3696 2014 495 847*2^2049400+1 616934 L2322 2014 496 73*2^2048754+1 616739 L3432 2013 (**) 497 527*2^2045751+1 615836 L346 2014 498 785*2^2045419+1 615736 L3861 2014 499 195*2^2044789+1 615546 L3744 2014 (**) 500 537*2^2044162+1 615357 L1741 2014 501 413*2^2043829+1 615257 L1300 2014 502 345*2^2042295+1 614795 L2562 2014 503 1069*2^2039562+1 613973 L1741 2014 504 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 505 1085*2^2038005+1 613504 L2520 2014 506 125*2^2037752-1 613427 L2444 2014 507 1069*2^2036902+1 613172 L3876 2014 508 417*2^2036482+1 613045 L1847 2014 509 701*2^2035955+1 612887 L2823 2014 510 1025*2^2034405+1 612420 L1741 2014 511 651*2^2034352+1 612404 L3459 2014 512 121*2^2033941-1 612280 L162 2006 513 57*2^2033643+1 612190 L3432 2013 (**) 514 249*2^2031803+1 611637 L2327 2014 515 783*2^2031629+1 611585 L2126 2014 516 285*2^2028495+1 610641 L2594 2014 517 775*2^2027562+1 610360 L1204 2014 518 621*2^2026864+1 610150 L3446 2014 519 357*2^2026846+1 610144 L2163 2014 (**) 520 879*2^2026501+1 610041 L1139 2014 521 787*2^2026242+1 609963 L2122 2014 522 919*2^2024094+1 609316 L1741 2014 523 235*2^2023486+1 609133 L2594 2014 524 195*2^2023030+1 608996 L376 2014 525 8*10^608989-1 608990 p297 2011 Near-repdigit 526 233*2^2022801+1 608927 L3767 2014 527 521*2^2022059+1 608704 L3760 2014 528 431*2^2019693+1 607991 L2100 2014 529 1155*2^2019244+1 607857 L3873 2014 530 195*2^2018866+1 607742 L2413 2014 531 59506*6^780877+1 607646 p254 2013 532 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) (**) 533 251749*2^2013995-1 606279 L436 2007 Woodall (**) 534 1023*2^2012570+1 605847 L1741 2014 535 403*2^2012412+1 605799 L3538 2014 536 1173*2^2012185+1 605732 L1413 2014 537 751*2^2010924+1 605352 L3859 2014 538 101*2^2009735+1 604993 L3432 2013 539 1069*2^2008558+1 604640 L1595 2014 540 881*2^2008309+1 604565 L3260 2014 541 959*2^2008035+1 604482 L1422 2014 542 633*2^2007897+1 604441 L3857 2014 543 223*2^2007748+1 604395 L1741 2014 544 461*2^2007631+1 604360 L1300 2014 545 477*2^2006719+1 604086 L3803 2014 546 428551*2^2006520+1 604029 g411 2011 547 1097*2^2005203+1 603630 L3868 2014 (**) 548 493*2^2002964+1 602955 L3800 2014 549 315*2^2002904+1 602937 L3790 2014 550 77*2^2002742-1 602888 L2074 2013 551 585*2^2002589+1 602843 L3035 2014 552 1059*2^2001821+1 602612 L2103 2014 553 1115*2^2000291+1 602151 L3588 2014 554 891*2^2000268+1 602144 L3440 2014 555 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 556 573*2^1998232+1 601531 L1300 2013 557 669*2^1995918+1 600835 L2659 2013 558 19861029*2^1995311-1 600656 L895 2013 559 261*2^1995105+1 600589 L3378 2013 560 1031*2^1994741+1 600480 L2626 2014 561 577*2^1994634+1 600448 L3035 2013 562 497*2^1994051+1 600272 L2413 2013 (**) 563 8331405*2^1993674-1 600163 L260 2011 564 467917*2^1993429-1 600088 L160 2005 565 137137*2^1993201-1 600019 L321 2007 566 589*2^1992774+1 599888 L2322 2013 567 209*2^1992071+1 599676 L3422 2013 568 317*2^1991592-1 599532 L1809 2014 569 547*2^1990606+1 599235 L3173 2013 570 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 571 105*2^1989208-1 598814 L1959 2014 572 1019*2^1988959+1 598740 L3514 2013 573 629*2^1988579+1 598625 L2117 2013 574 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 575 733*2^1988086+1 598477 L3502 2013 576 135*2^1987735+1 598370 L1300 2013 577 162434*5^856004-1 598327 L3410 2013 578 749*2^1986977+1 598143 L1492 2013 579 174344*5^855138-1 597722 L3354 2013 580 8331405*2^1984565-1 597421 L260 2011 581 195*2^1983875-1 597209 L1828 2014 582 445*2^1980900+1 596313 L3577 2013 583 731*2^1980503+1 596194 L3035 2013 584 1147*2^1978390+1 595558 L1741 2013 585 25*2^1977369-1 595249 L426 2008 586 148323*2^1973319-1 594034 L587 2011 587 705*2^1972428+1 593763 L3043 2013 588 549*2^1971183+1 593388 L2840 2013 589 441*2^1968431+1 592560 L3035 2013 590 1485*2^1968400-1 592551 L1134 2014 591 1159*2^1968190+1 592488 L3035 2013 592 731*2^1968039+1 592442 L3682 2013 593 833*2^1967841+1 592383 L3744 2013 594 989*2^1967819+1 592376 L3738 2013 595 1035*2^1967708+1 592343 L3739 2013 596 203*2^1966689+1 592035 L1408 2013 597 273*2^1966630+1 592018 L2532 2013 598 93*2^1965880+1 591791 L1210 2011 599 253*2^1965215-1 591592 L3345 2012 600 1089*2^1964781+1 591462 L3737 2013 601 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat 602 125*2^1963964-1 591215 L1959 2014 603 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 604 113*2^1960341+1 590124 L3091 2013 605 57406*5^844253-1 590113 L3313 2012 606 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 607 803*2^1959445+1 589855 L2724 2013 608 1149*2^1957223+1 589186 L1935 2013 609 129*2^1956915+1 589093 L2826 2013 610 229*2^1956294+1 588906 L3548 2013 611 74*500^218184-1 588874 p355 2013 612 1045*2^1955356+1 588624 L1186 2013 613 112*113^286643-1 588503 L426 2012 614 1137*2^1954730+1 588436 L3733 2013 (**) 615 673*2^1954456+1 588353 L3666 2013 616 121*2^1954243-1 588288 L162 2006 617 351*2^1954003+1 588217 L2413 2013 618 641*2^1952941+1 587897 L3487 2013 619 Phi(3,94259^59049) 587458 p269 2014 Generalized unique (**) 620 1173*2^1951169+1 587364 L3171 2013 621 1101*2^1950812+1 587256 L2719 2013 622 313*2^1949544+1 586874 L2520 2013 623 391*2^1949159-1 586758 L2519 2014 624 539*2^1949135+1 586751 L1130 2013 (**) 625 111*2^1946322-1 585904 L2484 2012 626 639*2^1945473+1 585649 L2649 2013 627 675*2^1945232+1 585577 L3688 2013 628 417*2^1943755+1 585132 L3173 2013 629 89*2^1943337+1 585005 L2413 2011 (**) 630 269*2^1942389+1 584720 L3548 2013 631 1093*2^1941672+1 584505 L2322 2013 632 193*2^1940804+1 584243 L3418 2013 633 827*2^1940747+1 584226 L3206 2013 634 221*2^1940211+1 584065 L2327 2013 635 575*2^1938673+1 583602 L2019 2013 636 1179*2^1938570+1 583571 L1300 2013 637 865*2^1938180+1 583454 L3233 2013 638 1091*2^1937857+1 583357 L3731 2013 639 555*2^1937595+1 583277 L2826 2013 640 9299*2^1937309+1 583193 L3886 2014 641 239*2^1936025+1 582804 L1741 2013 642 182627*2^1934664-1 582398 L3336 2012 643 363*2^1932724+1 581811 L3171 2013 644 143*2^1932112-1 581626 L1828 2012 645 48764*5^831946-1 581510 L3313 2012 646 387*2^1930200+1 581051 L1129 2013 647 735*2^1929225+1 580758 L3378 2013 648 214519*2^1929114+1 580727 g346 2006 649 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) (**) 650 633*2^1925684+1 579692 L1408 2013 651 1005*2^1923658+1 579082 L3514 2013 (**) 652 243*2^1923567-1 579054 L2055 2011 653 319*2^1923378+1 578997 L3548 2013 654 851*2^1922179+1 578637 L3180 2013 655 625*2^1921056+1 578299 L3378 2013 Generalized Fermat 656 157*2^1920152+1 578026 L2494 2013 657 335*2^1917610-1 577261 L1809 2014 658 133631*28^398790-1 577118 p255 2013 659 191*2^1916611+1 576960 L1792 2013 660 1087*2^1916212+1 576841 L2719 2013 661 1125*2^1915695+1 576685 L3719 2013 662 207*2^1913067+1 575893 L1741 2013 663 849*2^1913021+1 575880 L2413 2013 664 85*2^1910520+1 575126 L2703 2011 665 267*2^1909876-1 574933 L1828 2013 666 621*2^1909716+1 574885 L2117 2013 667 611*2^1909525+1 574828 L2413 2013 668 435*2^1908579+1 574543 L3385 2013 669 291*2^1907541-1 574230 L2484 2013 670 573*2^1907450+1 574203 L2520 2013 671 969*2^1904357+1 573272 L2719 2013 672 27*2^1902689-1 572768 L1153 2009 673 553*2^1902102+1 572593 L2520 2013 (**) 674 1323*2^1899548-1 571825 L1828 2014 675 633*2^1897632+1 571247 L1741 2013 676 1131*2^1897379-1 571172 L1828 2014 677 707*2^1895035+1 570466 L3035 2013 678 1053*2^1891799-1 569492 L1828 2014 679 687*2^1891730+1 569471 L3221 2013 680 87*2^1891391+1 569368 L2673 2011 (**) 681 85287*2^1890011+1 568955 p254 2011 682 221*2^1889983+1 568944 L1741 2013 683 585*2^1887819+1 568293 L3171 2013 684 347*2^1887507+1 568199 L3548 2013 685 391*2^1886863-1 568005 L1809 2014 686 791*2^1885961+1 567734 L3075 2013 687 975*2^1885724+1 567663 L1129 2013 688 987*2^1885160+1 567493 L2070 2013 689 744716047603963*2^1884575-1 567329 L257 2013 690 485*2^1884579+1 567318 L3548 2013 691 879*2^1883385+1 566959 L3223 2013 692 693*2^1881882+1 566506 L2322 2013 693 639*2^1880451+1 566075 L3141 2013 694 277*2^1880022+1 565946 L3418 2013 695 89*2^1879132-1 565678 L1828 2013 696 441*2^1879067+1 565659 L2840 2013 697 729*2^1877995+1 565336 L1792 2013 698 645*2^1877756+1 565264 L2981 2013 699 613*2^1876758+1 564964 L2413 2013 700 267*2^1876604+1 564917 L1792 2013 701 345067*2^1876573-1 564911 g59 2005 702 1063*2^1876427-1 564864 L1828 2014 703 1389*2^1876376-1 564849 L1828 2014 704 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 705 4015*2^1875453-1 564572 L1959 2014 706 1043*2^1875213+1 564499 L2413 2013 707 1209*2^1874804-1 564376 L1828 2014 708 1199*2^1874495+1 564283 L2827 2013 709 495*2^1874077+1 564157 L1344 2013 710 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) (**) 711 21*2^1872923-1 563808 L2074 2012 712 1309*2^1871045-1 563244 L1828 2014 713 735*2^1870118+1 562965 L3075 2013 714 575*2^1869989+1 562926 L3650 2013 715 315*2^1869119-1 562664 L2235 2012 716 933*2^1868602+1 562509 L3709 2013 717 503*2^1868417+1 562453 L3378 2013 718 1073*2^1867944-1 562311 L1828 2014 719 1115*2^1866094-1 561754 L1828 2014 720 407*2^1864735+1 561344 L2520 2013 721 489*2^1864339+1 561225 L2520 2013 722 427*2^1863702+1 561033 L3586 2013 723 1161*2^1863637+1 561014 L3213 2013 724 2*3^1175232+1 560729 p199 2010 (**) 725 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 726 411*2^1861627+1 560409 L1741 2013 727 1165*2^1860749-1 560145 L1828 2014 728 103*2^1860103-1 559949 L2484 2012 729 161*2^1859586-1 559794 L177 2013 730 51*2^1859193+1 559675 L1204 2011 731 1177*2^1859144+1 559662 L3625 2013 732 8331405*2^1858587-1 559498 L260 2011 733 669*2^1857223+1 559083 L2413 2013 734 1125*2^1856703-1 558927 L1828 2014 735 1155*2^1855389-1 558531 L1828 2014 736 4031*2^1855338-1 558516 L1959 2014 737 126072*31^374323-1 558257 L2054 2012 738 1229*2^1853192-1 557870 L1828 2014 739 333*2^1853115-1 557846 L1830 2012 740 87*2^1852590-1 557688 L2055 2011 741 765*2^1849609+1 556791 L1792 2013 742 137*2^1849238-1 556679 L321 2007 743 639*2^1848903+1 556579 L3439 2013 744 261*2^1848217+1 556372 L1983 2013 (**) 745 275*2^1846390-1 555822 L2444 2014 746 1011*2^1846173+1 555757 L3221 2013 747 1029*2^1844975+1 555396 L2626 2013 748 133*2^1843619-1 554987 L1959 2014 749 261*2^1843555-1 554968 L1828 2013 750 953*2^1841461+1 554338 L3612 2013 751 1089*2^1840695-1 554108 L1828 2014 752 105*2^1840262-1 553977 L1959 2014 753 1009*2^1840225-1 553966 L1828 2014 754 1323*2^1839623-1 553785 L1828 2014 755 681*2^1839269+1 553678 L3141 2013 756 399*2^1839019-1 553603 L1809 2014 757 779*2^1838955+1 553584 L3640 2013 758 135*2^1838124+1 553333 L3472 2013 759 15*2^1837873-1 553257 L632 2008 760 379*2^1837291-1 553083 L1809 2014 761 333*2^1837105+1 553027 L3470 2013 762 309*2^1836139+1 552736 L3460 2013 763 4061*2^1835582-1 552569 L1959 2014 764 423*2^1835585+1 552569 L2873 2013 765 1181*2^1834802-1 552334 L1828 2014 766 73*2^1834526+1 552250 L1513 2011 (**) 767 309*2^1834379+1 552206 L3471 2013 768 87*2^1834098+1 552121 L1513 2011 (**) 769 1021*2^1833459-1 551930 L1828 2014 770 1485*2^1832651-1 551687 L1134 2014 771 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) (**) 772 549*2^1832457+1 551628 L3641 2013 (**) 773 295*2^1832129-1 551529 L2444 2014 774 761*2^1831569+1 551361 L2117 2013 775 519*2^1831415+1 551314 L3277 2013 776 21*2^1830919+1 551163 g279 2004 (**) 777 197*2^1830255+1 550964 L1360 2013 778 1021*2^1827279-1 550069 L1828 2013 779 825*2^1825439+1 549515 L3289 2013 780 679*2^1824918+1 549358 L2100 2013 781 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 782 235*2^1824515-1 549237 L2444 2014 783 162668*5^785748-1 549220 L3190 2012 784 389*2^1824385+1 549198 L1487 2013 785 1135*2^1824103-1 549113 L1828 2013 786 991*2^1822216+1 548545 L1312 2013 787 1089*2^1821417+1 548305 L1741 2013 788 993*2^1821088+1 548206 L2131 2013 789 513*2^1820982+1 548173 L2826 2013 790 933*2^1820068+1 547899 L2895 2013 791 921*2^1819560+1 547746 L1741 2013 792 557*2^1819191+1 547634 L2526 2013 793 593*2^1818825+1 547524 L3630 2013 794 1161*2^1818637+1 547468 L2399 2013 795 1387*2^1818593-1 547455 L1828 2012 796 875*2^1818427+1 547405 L3035 2013 797 229*2^1818078+1 547299 L3456 2013 798 454483*2^1817935-1 547259 p77 2014 (**) 799 127*2^1817862+1 547234 L3452 2013 800 35*2^1817486-1 547120 L2074 2011 801 1155*2^1816779-1 546909 L1828 2012 802 69*2^1816739+1 546895 L1204 2011 803 875*2^1814911+1 546346 L3691 2013 804 1029*2^1813839+1 546023 L3378 2013 805 555*2^1813556+1 545938 L3233 2013 806 33*2^1813526-1 545928 L621 2008 807 1347*2^1813433-1 545901 L1828 2012 808 1143*2^1813125+1 545809 L3514 2013 809 1197*2^1811852+1 545425 L3035 2013 810 693*2^1811517+1 545324 L2967 2013 (**) 811 1099*2^1810686+1 545074 L3458 2013 812 1305*2^1809766-1 544797 L1828 2011 813 1185*2^1809466-1 544707 L1828 2011 814 659*2^1808691+1 544474 L3625 2013 815 145*2^1807767-1 544195 L840 2013 816 9*2^1807574+1 544135 L2419 2011 Generalized Fermat (**) 817 4117*2^1807085-1 543991 L1959 2014 818 375*2^1806591+1 543841 L3233 2013 819 889*2^1806470+1 543805 L2967 2013 820 1033*2^1805844+1 543617 L1502 2013 821 981*2^1805368+1 543473 L2413 2013 822 915*2^1805031+1 543372 L1741 2013 823 691*2^1804332+1 543161 L3625 2013 824 385*2^1802362+1 542568 L3279 2013 825 661*2^1802024+1 542467 L2967 2013 826 985*2^1801582+1 542334 L3035 2013 827 301*2^1801207-1 542220 p281 2010 828 1193*2^1801112-1 542192 L1828 2011 829 417643*2^1800787-1 542097 L134 2005 830 1045*2^1800784+1 542094 L3141 2013 831 1045*2^1800025-1 541865 L1828 2011 832 43*2^1799016+1 541560 L2562 2011 (**) 833 4079*2^1798192-1 541314 L1959 2014 834 1047*2^1797890+1 541222 L3473 2013 835 319*2^1797261-1 541032 L1819 2013 836 1103*2^1796969+1 540945 L2826 2013 837 43*2^1795628+1 540540 L1129 2011 838 383*2^1794636-1 540242 L1809 2014 839 423*2^1794546+1 540215 L3131 2013 840 1101*2^1794417-1 540177 L1828 2014 841 387*2^1793857-1 540008 L2519 2014 842 105*2^1793519-1 539906 L1959 2014 843 1103*2^1792513+1 539604 L3262 2013 844 431*2^1791441+1 539281 L3453 2013 845 1185*2^1791429-1 539277 L1828 2014 846 607*2^1790196+1 538906 L346 2013 847 1059*2^1789353+1 538652 L1130 2013 848 975*2^1789341+1 538649 L2085 2013 849 273*2^1788926-1 538523 L1828 2013 850 289184*5^770116-1 538294 p353 2012 851 1065*2^1787993-1 538243 L1828 2014 852 441*2^1787789+1 538181 L1209 2013 853 565*2^1787136+1 537985 L1512 2013 854 247*2^1786968+1 537934 L2533 2013 855 227*2^1786779+1 537877 L2058 2013 856 11812*5^769343-1 537752 p341 2012 857 933*2^1786320+1 537739 L1505 2013 858 507*2^1786194+1 537701 L3422 2013 859 921*2^1785808+1 537585 L3262 2013 860 1187*2^1785707+1 537555 L1753 2013 861 256*14^468784+1 537289 L3802 2014 Generalized Fermat 862 63*2^1784498+1 537190 L1415 2011 (**) 863 1333*2^1784103-1 537072 L1828 2014 864 231*2^1783821+1 536986 L3262 2013 (**) 865 4069*2^1781691-1 536347 L1959 2014 866 575*2^1781313+1 536232 L3262 2013 867 883*2^1780324+1 535934 L2963 2013 868 391*2^1780155-1 535883 L1809 2014 869 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) (**) 870 357659*2^1779748-1 535764 L47 2005 871 123*2^1779728-1 535754 L3967 2014 872 1061*2^1779595+1 535715 L3445 2013 873 455*2^1779315+1 535630 L2121 2013 874 863*2^1778737+1 535457 L1505 2013 875 316594*5^766005-1 535421 L3157 2012 876 99*2^1777688-1 535140 L1862 2011 877 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 878 511*2^1777488+1 535080 L2873 2013 879 243*2^1777467-1 535074 L2055 2011 880 177*2^1775674-1 534534 L2101 2012 881 293*2^1775450-1 534467 L2074 2014 882 1005*2^1775235-1 534402 L1828 2014 883 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 884 163*2^1771524+1 533285 L1741 2013 (**) 885 381*2^1771493+1 533276 L3444 2013 886 795*2^1770840+1 533079 L1505 2013 887 665*2^1769303+1 532617 L3441 2013 (**) 888 473*2^1769101+1 532556 L3459 2013 889 855*2^1768644+1 532418 L1675 2013 890 99*2^1768187+1 532280 L2517 2011 891 273*2^1766747-1 531847 L1828 2013 892 191*2^1766221+1 531688 L2539 2013 893 190088*5^760352-1 531469 L2841 2012 Generalized Woodall (**) 894 1005*2^1765454-1 531458 L1828 2014 895 35*2^1765449+1 531455 L1204 2011 (**) 896 1347*2^1765384-1 531437 L1828 2014 897 981*2^1765221+1 531388 L1204 2013 898 255*2^1765113+1 531355 L2085 2013 899 399*2^1764851-1 531276 L1809 2014 900 65*2^1764687+1 531226 L1125 2011 901 717*2^1763367+1 530830 L3440 2013 902 335*2^1762548-1 530583 L1809 2014 903 1399*2^1762191-1 530476 L1828 2014 904 16193*22^395119-1 530421 p255 2013 905 531*2^1761689+1 530324 L3458 2013 906 963*2^1761050+1 530132 L1204 2013 907 1253*2^1760738-1 530039 L1828 2014 908 4199*2^1760292-1 529905 L1959 2014 909 1037*2^1760216-1 529881 L1828 2014 910 969*2^1759430+1 529645 L3262 2013 911 119*2^1759247+1 529589 L3035 2013 912 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) (**) 913 417*2^1759055+1 529531 L2623 2013 914 787*2^1757702+1 529124 L3436 2013 (**) 915 357*2^1756764-1 528842 L2519 2014 916 57*2^1756702+1 528822 L1741 2011 917 135*2^1756478+1 528755 L3127 2013 918 855*2^1756269+1 528693 L2636 2013 919 603*2^1756142+1 528655 L2559 2013 920 71*2^1755965+1 528600 L1741 2011 921 485*2^1755887+1 528578 L3262 2013 922 31*2^1755317-1 528405 L330 2011 923 955*2^1755312+1 528405 L1741 2013 924 1391*2^1754922-1 528288 L1828 2014 925 161*2^1754223+1 528076 L3014 2013 926 5077*2^1753317-1 527805 L251 2008 927 1261*2^1753021-1 527716 L1828 2014 928 387*2^1752919+1 527684 L2636 2013 929 65*2^1752885+1 527673 L1204 2011 930 355*2^1752713-1 527622 L2519 2014 931 363*2^1752116+1 527443 L2085 2013 932 641*2^1751823+1 527355 L3459 2013 933 261*2^1751160+1 527155 L3192 2013 934 1179*2^1750847+1 527061 g387 2009 935 1293*2^1750532-1 526966 L1828 2014 936 340168*5^753789-1 526882 p323 2012 937 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 938 265*2^1745450+1 525436 L3423 2013 939 297*2^1745377-1 525414 L2074 2014 940 1293*2^1744930-1 525280 L1828 2014 941 495*2^1744183+1 525055 L1933 2013 942 327*2^1743751+1 524924 L1130 2013 943 415*2^1743176+1 524751 L3428 2013 944 695*2^1742755+1 524625 L1741 2013 945 1285*2^1742735-1 524619 L1828 2014 946 243*2^1742689+1 524605 L1204 2013 947 345*2^1742652-1 524594 L1830 2012 948 867*2^1742474+1 524540 L3188 2013 949 91*2^1742093-1 524425 L2338 2012 950 905*2^1742026-1 524406 L2012 2014 951 1295*2^1741794-1 524336 L1828 2014 952 315*2^1741334-1 524197 L1830 2012 953 525*2^1740056+1 523812 L1204 2013 954 319*2^1740047-1 523809 L1819 2013 955 1157*2^1739902-1 523766 L1828 2014 956 357*2^1739732+1 523715 L3427 2013 957 687*2^1739343+1 523598 L2117 2013 958 1041*2^1739189-1 523552 L1828 2014 959 627*2^1738864+1 523454 L2117 2013 960 95*2^1738427+1 523321 L2085 2011 961 793*2^1738400+1 523314 L3035 2013 962 729*2^1737901+1 523164 L2603 2013 963 1065*2^1736222+1 522658 L1204 2013 964 573*2^1735454+1 522427 L2675 2013 965 545*2^1735043+1 522303 L2131 2013 966 61*2^1734983-1 522284 L2055 2011 967 1125*2^1734821-1 522237 L1828 2014 968 6*10^522127+1 522128 p342 2012 969 1113*2^1733627-1 521877 L1828 2014 970 741*2^1733507+1 521841 L2549 2013 971 471*2^1732587+1 521564 L2085 2013 972 387*2^1732185-1 521443 L1809 2014 973 547*2^1731248+1 521161 L2873 2013 974 245*2^1730188-1 520841 L1862 2014 975 55*2^1729777-1 520717 L2074 2013 976 421*2^1729092+1 520512 L3234 2013 977 193*2^1728894+1 520452 L2559 2013 978 213*2^1728847-1 520438 L1863 2014 979 341*2^1728697+1 520393 L2981 2013 980 213*2^1728569+1 520354 L2520 2013 981 277*2^1728302+1 520274 L1130 2013 982 997*2^1728146+1 520227 L1595 2013 983 929*2^1728099+1 520213 L1745 2013 984 879*2^1727602+1 520063 L1935 2013 985 338948*5^743996-1 520037 p352 2012 986 600921*2^1727190-1 519942 g337 2013 987 597*2^1726268+1 519662 L2520 2013 988 1151*2^1726187+1 519638 L3262 2013 989 813*2^1725925+1 519559 L3171 2013 990 729*2^1724434+1 519110 L1484 2013 Generalized Fermat 991 615*2^1724209+1 519042 L2967 2013 992 1089*2^1723121-1 518715 L1828 2014 993 547*2^1723020+1 518684 L1745 2013 994 253*2^1722623-1 518564 L145 2007 995 2*3^1086112+1 518208 p199 2010 (**) 996 113*2^1721438-1 518207 L2484 2011 997 1299*2^1721369-1 518187 L1828 2014 998 1195*2^1720342+1 517878 L1935 2013 999 465*2^1720310+1 517868 L2938 2013 1000 1159*2^1719862+1 517734 L3035 2013 1001 545*2^1719517+1 517629 L2583 2013 1002 235*2^1718787-1 517409 L2444 2014 1003 371*2^1717250-1 516947 L3844 2014 1004 897*2^1716807+1 516814 L2322 2013 1005 383*2^1716780-1 516805 L2519 2014 1006 1307*2^1716556-1 516738 L1828 2014 1007 1017*2^1715060+1 516288 L1204 2013 1008 423*2^1714680+1 516173 L1204 2013 1009 975*2^1714004+1 515970 L2117 2012 1010 1101*2^1712807+1 515610 L1935 2012 1011 175*2^1711779-1 515300 L384 2014 1012 1485*2^1711331-1 515166 L1134 2014 1013 1029*2^1711100-1 515096 L1828 2014 1014 491*2^1710497+1 514914 L3271 2013 1015 237*2^1710490+1 514912 L1408 2013 1016 387*2^1709440-1 514596 L3844 2014 1017 833*2^1708797+1 514403 L1935 2012 1018 1035*2^1708648+1 514358 L2973 2012 1019 333*2^1708106+1 514194 L3154 2013 1020 18656*5^735326-1 513976 p280 2012 1021 183*2^1707182-1 513916 L384 2014 1022 935*2^1707129+1 513901 L1300 2012 1023 889*2^1707094+1 513890 L3262 2012 1024 267*2^1705793-1 513498 L1828 2013 1025 291*2^1705173-1 513311 L2484 2013 1026 165*2^1705093+1 513287 L1158 2013 (**) 1027 109*2^1704658+1 513156 L1751 2012 1028 727*2^1704196+1 513017 L1741 2012 1029 4035*2^1704089-1 512986 L1959 2014 1030 2*3^1074726+1 512775 p199 2010 (**) 1031 165*2^1703392+1 512775 L2131 2013 1032 1195*2^1703221-1 512724 L1828 2014 1033 313*2^1703119-1 512693 L1809 2013 1034 855*2^1703065+1 512677 L1741 2012 1035 283*2^1702599-1 512536 L426 2010 1036 851*2^1702569+1 512528 L3344 2012 1037 1057*2^1701973-1 512348 L1828 2014 1038 1071*2^1701792+1 512294 L3343 2012 1039 4187*2^1701140-1 512098 L1959 2014 1040 1005*2^1700883-1 512020 L1828 2014 1041 233*2^1700734-1 511975 L426 2010 1042 1642*30^346592-1 511962 p268 2012 1043 927*2^1699446+1 511588 L1741 2012 1044 657*2^1699031+1 511463 L3261 2012 (**) 1045 1065*2^1698303+1 511244 L1741 2012 1046 561*2^1697783+1 511087 L1360 2012 1047 5*10^511056-1 511057 p297 2011 Near-repdigit 1048 1193*2^1696600-1 510731 L1828 2014 1049 259*2^1695723-1 510466 L2444 2014 1050 121*2^1695499-1 510399 L62 2005 1051 883*2^1694710+1 510162 L1204 2012 1052 985*2^1694268+1 510029 L3167 2012 (**) 1053 405*2^1693765+1 509877 L1741 2013 1054 873*2^1692706+1 509559 L1980 2012 1055 299*2^1692271+1 509427 L1741 2013 1056 993*2^1691212+1 509109 L3262 2012 1057 1369*2^1690781-1 508979 L1828 2014 1058 395*2^1690690-1 508951 L1819 2013 1059 217*2^1690664+1 508943 L3412 2013 1060 599*2^1687659+1 508039 L3262 2012 1061 20049*2^1687252-1 507918 L1471 2011 1062 915*2^1686699+1 507750 L2520 2012 1063 2*3^1063844-1 507583 L426 2012 1064 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) (**) 1065 1191*2^1686001+1 507540 L1935 2012 1066 693*2^1685544+1 507403 L1354 2012 1067 339*2^1685135+1 507279 L1595 2013 1068 19*2^1684813-1 507181 L503 2008 1069 133*2^1684616+1 507123 L2826 2013 1070 110059!+1 507082 p312 2011 Factorial (**) 1071 1119*2^1684471-1 507080 L1828 2014 1072 415*2^1684046+1 506951 L1990 2013 1073 1004*133^238300-1 506117 p289 2013 1074 249*2^1681039+1 506046 L1741 2013 1075 5374*5^723697-1 505847 p351 2012 1076 555*2^1679952+1 505719 L3262 2012 1077 193*2^1679938+1 505715 L1741 2013 1078 357*2^1679872+1 505695 L3139 2013 1079 309*2^1679867+1 505693 L2675 2013 (**) 1080 985*2^1679754+1 505660 L1741 2012 1081 1065*2^1679402+1 505554 L3262 2012 1082 1109*2^1677760-1 505060 L1828 2014 1083 139*666^178851-1 504984 L2054 2011 1084 559*2^1677446+1 504965 L3262 2012 1085 411*2^1677196+1 504889 L2734 2013 (**) 1086 905*2^1677085+1 504856 L3249 2012 1087 60357*2^1676907+1 504805 L587 2011 1088 567*2^1676783+1 504765 L1576 2012 1089 255*2^1675403+1 504349 L1741 2013 1090 95*2^1674777+1 504161 L1224 2011 (**) 1091 1043*2^1674573+1 504100 L3338 2012 1092 699*2^1674293+1 504016 L2366 2012 1093 1355*2^1674156-1 503975 L1828 2014 1094 93*2^1673893+1 503894 L2085 2011 1095 173*2^1673881+1 503891 L3234 2013 1096 1333*2^1673867-1 503888 L1828 2014 1097 879*2^1672525+1 503484 L1741 2012 1098 987*2^1672475+1 503469 L1745 2012 1099 1193*2^1672244-1 503399 L1828 2014 1100 847*2^1670014+1 502728 L3173 2012 1101 141*2^1669965+1 502712 L3294 2013 (**) 1102 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 1103 1089*2^1669361+1 502531 L1584 2012 (**) 1104 161*2^1668927+1 502400 L2520 2013 1105 525*2^1668316+1 502216 L3221 2012 1106 15*2^1667744+1 502043 g279 2007 (**) 1107 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38? 1108 195*2^1667115-1 501854 L1828 2014 1109 149183*2^1666957+1 501810 g346 2005 1110 205*2^1666435-1 501650 L2444 2014 1111 99*2^1665995+1 501517 L2121 2011 (**) 1112 403*2^1664194+1 500975 L2626 2013 1113 233*2^1662513+1 500469 L3035 2013 1114 441*2^1662069+1 500336 L3113 2013 1115 533*2^1660425+1 499841 L2117 2012 1116 825*2^1660087+1 499739 L2366 2012 1117 63*2^1659338-1 499513 L503 2008 1118 521*2^1659077+1 499435 L3262 2012 1119 399*2^1659001-1 499412 L1819 2014 1120 393*2^1658625+1 499299 L3409 2013 1121 239*30^337990-1 499255 p268 2012 1122 171*2^1658303+1 499202 L1300 2013 1123 257*2^1658254-1 499187 L2444 2014 1124 1323*2^1655130-1 498247 L1828 2014 1125 297*2^1655042-1 498220 L2074 2013 1126 61*2^1654383-1 498021 L503 2008 1127 1047*2^1653096+1 497635 L1792 2012 1128 1163*2^1652438-1 497437 L1828 2014 1129 68*23^365239+1 497358 p261 2009 1130 499*2^1651814+1 497249 L1842 2013 1131 1119*2^1651684-1 497210 L1828 2014 1132 689*2^1651563+1 497173 L1204 2012 1133 143*2^1650689+1 496910 L1751 2012 (**) 1134 1485*2^1650597+1 496883 L1134 2014 1135 785*2^1650459+1 496841 L2876 2012 (**) 1136 1023*2^1649882-1 496667 L1828 2014 1137 233*2^1649741+1 496624 L3405 2013 1138 183*2^1649506+1 496554 L2520 2013 (**) 1139 69*2^1649423-1 496528 L621 2008 1140 925*2^1649360+1 496510 L3262 2012 1141 469949*2^1649228-1 496473 L160 2007 1142 1383*2^1648494-1 496250 L1828 2014 1143 295*2^1648168+1 496151 L2826 2013 (**) 1144 1071*2^1647962-1 496090 L1828 2014 1145 309*2^1647947-1 496084 L2028 2012 1146 209*2^1647640-1 495992 L2338 2012 1147 199*2^1647595-1 495978 L2074 2014 1148 445*2^1646888+1 495766 L1300 2013 1149 331*2^1646668+1 495699 L2241 2013 1150 49*2^1646042+1 495510 L2516 2011 Generalized Fermat (**) 1151 381*2^1646029-1 495507 L1809 2014 1152 31347*2^1645868+1 495461 L3886 2014 1153 72532*5^708453-1 495193 p341 2012 1154 81*2^1643428+1 494724 g418 2009 Generalized Fermat 1155 771*2^1643321+1 494692 L1741 2012 1156 933*2^1642574+1 494468 L2826 2012 1157 1101*2^1641145-1 494037 L1828 2014 1158 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 1159 265*2^1639448+1 493526 L2322 2013 1160 315*2^1639432-1 493521 L1827 2011 1161 251048373*2^1638322+1 493193 p221 2009 1162 125522417*2^1638323+1 493193 p221 2009 1163 250171825*2^1638322+1 493193 p221 2009 1164 1000628481*2^1638320+1 493193 p221 2009 1165 531*2^1637465+1 492929 L2322 2012 1166 179*2^1636808-1 492731 L2444 2014 1167 1135*2^1635787-1 492425 L1828 2014 1168 765*2^1635531+1 492347 L3035 2012 1169 871*2^1635488+1 492334 L3108 2012 1170 369*2^1635299-1 492277 L1809 2014 1171 169*2^1635086+1 492213 L1130 2013 Generalized Fermat 1172 277*2^1634878+1 492150 L1300 2013 1173 971*2^1633735+1 491807 L2735 2012 (**) 1174 645*2^1633521+1 491742 L3035 2012 1175 1185*2^1632895+1 491554 L2989 2012 1176 267*2^1632893-1 491553 L1828 2013 1177 539*2^1632705+1 491496 L3237 2012 1178 53*2^1632590-1 491461 L2055 2011 1179 675*2^1632285+1 491370 L3260 2012 1180 937*2^1632080+1 491309 L3221 2012 1181 213*2^1632054-1 491300 L1863 2014 1182 1245*2^1629370-1 490493 L1828 2014 1183 321*2^1629307+1 490473 L2981 2013 1184 267*2^1629148-1 490425 L1828 2013 1185 555*2^1629059+1 490399 L1741 2012 1186 907*2^1628548+1 490245 L2826 2012 1187 69*2^1628378+1 490193 L2507 2011 1188 113*2^1627496-1 489928 L2484 2011 1189 63*2^1626259-1 489555 L1828 2011 1190 63*2^1625970+1 489468 L1135 2011 1191 975*2^1624794+1 489115 L2085 2012 1192 715*2^1624000+1 488876 L3335 2012 1193 897*2^1623927+1 488854 L3173 2012 1194 1107*2^1622806-1 488517 L1828 2014 1195 651*2^1621489+1 488120 L3141 2012 1196 939*2^1621215+1 488038 L3312 2012 1197 1179*2^1621053-1 487989 L1828 2014 1198 225*2^1620601-1 487852 L2074 2013 1199 913*2^1619004+1 487372 L3167 2012 1200 269*2^1618877+1 487333 L1741 2013 1201 183*2^1618775-1 487303 L384 2014 1202 117*2^1618434-1 487200 L384 2014 1203 2*626^174203+1 487172 L1471 2011 1204 495*2^1616716+1 486683 L2967 2013 1205 825*2^1616204+1 486529 L3014 2012 1206 87*2^1616138-1 486508 L1828 2011 1207 1039*2^1616090+1 486495 L3173 2012 1208 1305*2^1616072-1 486490 L1828 2014 1209 357*2^1615655+1 486364 L3422 2013 1210 4121*2^1615478-1 486311 L1959 2014 1211 9101981*2^1612898-1 485538 L1134 2014 1212 39*2^1612681+1 485467 L1379 2011 1213 395*2^1611672-1 485165 L1819 2013 1214 31*2^1611311-1 485055 L330 2010 1215 713*2^1610773+1 484894 L3110 2012 1216 133*2^1609799-1 484600 L1959 2014 1217 459*2^1609603+1 484542 L2787 2013 1218 1017*2^1609428-1 484490 L1828 2014 1219 569*2^1608879+1 484324 L333 2012 1220 521*2^1608779+1 484294 L2051 2012 1221 1041*2^1607579-1 483933 L1828 2014 1222 81*2^1606848+1 483712 gt 2007 Generalized Fermat 1223 1291*2^1606629-1 483647 L1828 2014 1224 465*2^1606272+1 483539 L2826 2013 1225 1113*2^1606260-1 483536 L1828 2014 1226 1109*2^1606173+1 483510 L1935 2012 1227 288*706^169692+1 483422 p268 2013 1228 183*2^1605657+1 483354 L2085 2013 1229 486*187^212627+1 483058 p289 2012 1230 48*580^174782-1 483000 p355 2013 1231 1009*2^1602478+1 482397 L1300 2012 1232 2*3^1010743-1 482248 L426 2011 (**) 1233 959*2^1600467+1 481792 L1745 2012 1234 1305*2^1600351-1 481757 L1828 2014 1235 1073*2^1600077+1 481675 L3110 2012 1236 335*2^1597932-1 481028 L3844 2014 1237 555*2^1597517+1 480904 L2366 2012 1238 15*2^1597510+1 480900 g279 2006 (**) 1239 305*2^1597089+1 480775 L2520 2013 1240 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 1241 235*2^1596836+1 480698 L2085 2013 1242 391*2^1596805-1 480689 L3870 2014 1243 1033*2^1596708+1 480661 L3173 2012 1244 135*2^1596454+1 480583 L2532 2013 1245 1151*2^1596226-1 480515 L1828 2014 1246 659*2^1595363+1 480255 L1935 2012 1247 315*2^1595314+1 480240 L3397 2013 (**) 1248 69*2^1595083+1 480170 L2085 2011 (**) 1249 1163*2^1594568-1 480016 L1828 2014 1250 1113*2^1594402+1 479966 L1300 2012 1251 58753*2^1594323-1 479944 p190 2006 1252 555*2^1593788+1 479781 L3035 2012 1253 481*2^1593660+1 479743 L1204 2013 1254 1197*2^1593401-1 479665 L1828 2014 1255 1147*2^1593256+1 479621 L3035 2012 1256 737*2^1592724-1 479461 L191 2006 1257 79*2^1592422+1 479369 L1885 2011 (**) 1258 853*2^1592254+1 479320 L3035 2012 1259 110413*2^1591999-1 479245 L111 2005 1260 99*2^1591984-1 479237 L282 2009 1261 1179*2^1591362+1 479051 g387 2006 1262 875*2^1591229+1 479011 L3221 2012 1263 1377*2^1591036-1 478953 L1828 2014 1264 65623*2^1590940+1 478926 L3886 2014 1265 135*2^1590711+1 478854 L1204 2013 1266 169*2^1590665-1 478841 L2074 2014 1267 1227*2^1590433-1 478772 L1828 2014 1268 279*2^1590369-1 478752 L1828 2013 1269 1135*2^1590353-1 478748 L1828 2014 1270 121*2^1589157-1 478387 L65 2005 1271 285*2^1588353+1 478145 L1733 2013 1272 1281*2^1587882-1 478004 L1828 2014 1273 263*2^1587302-1 477828 L2101 2012 1274 289*2^1587151-1 477783 L1828 2011 1275 1197*2^1587140+1 477780 L3260 2012 1276 19502212^65536+1 477763 p160 2005 Generalized Fermat 1277 1191*2^1586696+1 477647 L2876 2012 1278 1039*2^1586474+1 477580 L1502 2012 1279 261*2^1586347+1 477541 L3237 2013 1280 1221*2^1585485-1 477282 L1828 2014 1281 277*2^1584740+1 477057 L1502 2013 1282 1908*22^355313+1 476984 L1471 2013 1283 1017*2^1584225-1 476903 L1828 2014 1284 393*2^1583890-1 476801 L3844 2014 1285 763*2^1583512+1 476688 L1935 2012 1286 277*2^1583097-1 476563 L2484 2013 1287 855*2^1582921+1 476510 L3035 2012 1288 1098133#-1 476311 p346 2012 Primorial (**) 1289 (2^64-189)*10^476124+1 476144 p342 2013 1290 311*2^1581686-1 476138 L623 2009 1291 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) (**) 1292 1185*2^1580824-1 475879 L1828 2014 1293 989*2^1580147+1 475675 L3333 2012 1294 159*2^1579426+1 475457 L3179 2013 1295 4494381*2^1579256+1 475411 L2425 2011 1296 3437965*2^1579256+1 475410 L2425 2011 1297 552073*2^1579256+1 475410 L2425 2011 1298 396687*2^1579256+1 475410 L2425 2011 1299 1167*2^1579018+1 475335 L1728 2012 1300 603*2^1578398+1 475148 L333 2012 1301 2488*5^679769-1 475142 p321 2011 1302 1195*2^1577839-1 474980 L1828 2014 1303 17684828^65536+1 474979 g410 2007 Generalized Fermat 1304 17655444^65536+1 474932 g410 2007 Generalized Fermat 1305 17629398^65536+1 474890 g410 2007 Generalized Fermat 1306 365*2^1577413+1 474852 L1204 2013 (**) 1307 553*2^1577344+1 474831 L3260 2012 1308 909*2^1576339+1 474529 L2085 2012 1309 805*2^1576258+1 474504 L3035 2012 1310 171*2^1575999-1 474426 L384 2014 1311 99*2^1575803+1 474366 L1500 2011 1312 373*2^1575751-1 474351 L1819 2012 1313 1003*2^1575486+1 474272 L1484 2012 1314 29*2^1574753+1 474050 L391 2008 1315 1347*2^1574633-1 474015 L1828 2014 1316 67*2^1573454+1 473659 L1125 2011 (**) 1317 703*2^1572182+1 473277 L2366 2012 1318 175*2^1571521-1 473078 L2074 2013 1319 111*2^1570718-1 472836 L1862 2012 1320 26*800^162819+1 472680 p355 2012 1321 429*2^1569942+1 472603 L2675 2013 1322 4183*2^1568799-1 472260 L1959 2014 1323 197*2^1568755+1 472245 L1204 2013 1324 483*2^1568404+1 472140 L1204 2013 1325 139*2^1567874+1 471980 p189 2006 1326 1345*2^1567289-1 471805 L1828 2014 1327 103040!-1 471794 p301 2010 Factorial (**) 1328 331882*5^674961-1 471784 p333 2011 1329 191*2^1567005+1 471718 L3035 2013 1330 69*2^1566375-1 471528 L1828 2011 1331 1079*2^1565923+1 471393 L1344 2012 1332 285*2^1565353-1 471221 L3202 2013 1333 729*366^183817-1 471215 L2054 2011 1334 285*2^1563167-1 470563 L3202 2013 1335 1047*2^1563150+1 470559 L3221 2012 (**) 1336 "19000302866132191930...(470418 other digits)...64447092025915867137" 470458 p360 2013 1337 103*2^1562619-1 470398 L2484 2012 1338 149*2^1561951+1 470197 L2322 2013 1339 891*2^1561849+1 470167 L2626 2012 1340 93*2^1561686+1 470117 L1741 2011 (**) 1341 931*2^1561084+1 469937 L1167 2012 1342 695*2^1560515+1 469765 L2117 2012 1343 219*2^1560099+1 469639 L1505 2013 1344 371*2^1559073+1 469331 L1745 2013 1345 651*2^1558979+1 469303 L3329 2012 1346 817*2^1554994+1 468103 L2085 2012 1347 117*2^1554601-1 467984 L3519 2013 1348 1185*2^1553995+1 467803 L2366 2012 1349 161*2^1553570-1 467674 L177 2011 1350 1043*2^1553422-1 467630 L1828 2014 1351 1361*2^1552370-1 467314 L1828 2014 1352 1323*2^1551755-1 467128 L1828 2014 1353 1071*2^1548940+1 466281 L1204 2012 1354 1021*2^1548585-1 466174 L1828 2014 1355 52*701^163776+1 466063 p268 2013 1356 1199*2^1548171+1 466049 L2981 2012 1357 95*10^466002-1 466004 L3735 2014 Near-repdigit 1358 189*2^1547744-1 465920 L384 2014 1359 363*2^1547344-1 465800 L3870 2014 1360 409*2^1546542+1 465559 L3248 2013 1361 135*2^1545961+1 465383 L2549 2013 (**) 1362 539*2^1545909+1 465368 L3327 2012 1363 477*2^1545648+1 465290 L1484 2013 (**) 1364 4087*2^1545033-1 465105 L1959 2014 1365 81*2^1544545+1 464957 gt 2007 1366 1003*2^1544288+1 464881 L1129 2012 1367 5*10^464843-1 464844 p297 2011 Near-repdigit 1368 95*2^1543676-1 464695 L2338 2011 1369 227*2^1542323+1 464288 L1204 2013 1370 703*2^1542084+1 464217 L2038 2012 1371 149*2^1541152-1 463936 L384 2013 1372 53*2^1541133+1 463929 L1158 2011 (**) 1373 83*2^1540750-1 463814 L1959 2011 1374 1061*2^1540377+1 463703 L2322 2012 1375 315*2^1539539-1 463450 L1827 2011 1376 395*2^1538975+1 463281 L2826 2013 1377 6*643^164915+1 463117 L3610 2013 1378 205*2^1537779-1 462920 L2444 2014 1379 333*2^1537644-1 462880 L1827 2011 1380 1077*2^1537453-1 462823 L1828 2013 1381 759*2^1537049+1 462701 L1484 2012 1382 1245*2^1536104-1 462417 L1828 2013 1383 1293*2^1536042-1 462398 L1828 2013 1384 699*2^1535678+1 462288 L1122 2012 1385 63*2^1535612-1 462268 L1828 2011 1386 234847*2^1535589-1 462264 L73 2005 1387 8331405*2^1534807-1 462030 L260 2011 1388 291*2^1534413-1 461907 L2484 2013 1389 393*2^1534045+1 461797 L2826 2013 1390 165*2^1533368+1 461592 L3149 2013 1391 1203*2^1531143-1 460924 L1828 2013 1392 63*2^1530888+1 460846 L2487 2011 (**) 1393 41*2^1530313+1 460672 L2131 2011 (**) 1394 1195*2^1530031-1 460589 L1828 2013 1395 1099*2^1529993-1 460577 L1828 2013 1396 347*2^1529964-1 460568 L2235 2013 1397 247*2^1529485-1 460424 L2338 2011 1398 771*2^1529249+1 460353 L3271 2012 1399 941*2^1529195+1 460337 L3110 2012 1400 505*2^1529188+1 460335 L2826 2012 1401 1105*2^1529161-1 460327 L1828 2013 1402 1113*2^1527832-1 459927 L1828 2013 1403 279*2^1526518+1 459531 L3173 2013 1404 1071*2^1526401+1 459496 L3221 2012 1405 121*2^1526097-1 459404 L65 2005 1406 115*2^1524183-1 458827 L2074 2013 1407 303*2^1523973+1 458765 L1300 2013 1408 1265*2^1523548-1 458637 L1828 2013 1409 289*2^1522650+1 458366 L1741 2013 Generalized Fermat 1410 731*2^1522457+1 458309 L3311 2012 1411 1221*2^1522283-1 458256 L1828 2013 1412 687*2^1522087+1 458197 L2606 2012 1413 165*2^1521629-1 458059 L2055 2011 1414 19709699*2^1521540-1 458037 L421 2008 1415 1257*2^1521398-1 457990 L1828 2013 1416 1425*2^1520604-1 457751 L1134 2014 1417 1015*2^1520177-1 457622 L1828 2013 1418 375*2^1518534-1 457127 L2235 2013 1419 731*2^1518257+1 457044 L1204 2012 1420 291*2^1516592+1 456543 L2117 2013 1421 243*2^1516368+1 456475 L2038 2013 1422 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 1423 825*2^1515604+1 456246 L3284 2012 1424 1169*2^1515073+1 456086 L3110 2012 1425 301*2^1514873-1 456025 p281 2010 1426 37674760044125*2^1513679-67931 455677 p339 2012 (**) 1427 1200007*(2^756839-1)*(1200007*(2^756839-1)+1)-1 455675 p168 2014 (**) 1428 363*2^1513706-1 455674 L1819 2014 1429 237*2^1512216-1 455225 L1828 2013 1430 1107*2^1511864-1 455120 L1828 2013 1431 93*2^1511692+1 455067 L1135 2011 1432 945*2^1511373+1 454972 L3276 2012 1433 165*2^1510977+1 454852 L1349 2012 1434 735*2^1509857+1 454516 L3319 2012 1435 4049*2^1509104-1 454290 L1959 2014 1436 4*83^236470+1 453805 p286 2010 Generalized Fermat 1437 143*2^1507352-1 453761 L1828 2012 1438 7*566^164827-1 453740 L1471 2011 1439 1115*2^1505697+1 453264 L3173 2012 1440 65*2^1505640-1 453245 L2055 2011 1441 431*2^1505493+1 453202 L2520 2013 1442 173*2^1504740-1 452975 L2074 2013 1443 1127*2^1504700-1 452963 L1828 2013 1444 237*2^1503376-1 452564 L1828 2013 1445 197*2^1502095+1 452178 L2912 2013 (**) 1446 1137*2^1501715+1 452065 L1745 2012 1447 907*2^1501169-1 451900 L860 2010 1448 1075*2^1500964+1 451839 L2066 2012 1449 579*2^1500429+1 451677 L1300 2012 1450 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 1451 429*2^1499779+1 451482 L2603 2012 1452 147*2^1499333-1 451347 L1959 2013 1453 533*2^1499097+1 451276 L1741 2012 1454 95*2^1498399+1 451066 L2494 2011 1455 27994*5^645221-1 450995 p324 2011 1456 4003*2^1496871-1 450607 L1959 2014 1457 191*2^1496507+1 450496 L1229 2012 (**) 1458 687*2^1496330+1 450444 L1745 2012 1459 1351*2^1495467-1 450184 L1828 2013 1460 32*26^318071+1 450064 L1471 2012 1461 1047*2^1494761-1 449971 L1828 2013 1462 283*2^1494614+1 449927 L2984 2012 1463 749*2^1494203+1 449803 L2706 2012 1464 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) (**) 1465 1365*2^1493923-1 449719 L1828 2013 1466 93*2^1493877+1 449704 L2085 2011 (**) 1467 262172*5^643342-1 449683 p323 2011 1468 651*2^1493757+1 449669 L2583 2012 1469 455*2^1493715+1 449656 L2734 2012 1470 711*2^1493231+1 449511 L1842 2012 1471 1287*2^1493088-1 449468 L1828 2013 1472 673*2^1492542+1 449303 L2826 2012 1473 1347*2^1492537-1 449302 L1828 2013 1474 1269*2^1492195-1 449199 L1828 2013 1475 1023*2^1492030-1 449149 L1828 2013 1476 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 1477 357*2^1491595+1 449018 L2960 2012 1478 303*2^1491450+1 448974 L1498 2012 1479 2232007*2^1490605-1 448724 L4 2003 1480 4185*2^1490448-1 448674 L1959 2014 1481 147*2^1490274+1 448620 L3030 2012 1482 1155*2^1490176-1 448591 L1828 2013 1483 789*2^1489887+1 448504 L1214 2012 1484 877*2^1489150+1 448282 L3019 2012 1485 49568*5^640900-1 447975 p321 2011 1486 191*2^1487775+1 447868 L1387 2012 1487 1181*2^1487725+1 447853 L1129 2012 1488 1077*2^1487269-1 447716 L1828 2013 1489 61*2^1487125-1 447672 L1828 2011 1490 103*2^1486695-1 447542 L2484 2012 1491 1239*2^1486540-1 447497 L1828 2013 1492 1155*2^1486428+1 447463 L2957 2012 1493 57*2^1486214-1 447397 L1828 2011 1494 1286*3^937499+1 447304 L2777 2012 Generalized Cullen (**) 1495 4137*2^1484145-1 446776 L1959 2014 1496 341*2^1484130-1 446771 L1819 2014 1497 377*2^1483586-1 446607 L1819 2013 1498 62*107^219967+1 446400 p289 2013 1499 8922449*2^1482840-1 446387 L536 2011 1500 355*2^1482390+1 446247 L2734 2012 1501 9*2^1481821-1 446074 L503 2008 1502 503*2^1481165+1 445878 L1204 2012 1503 583*2^1480974+1 445821 L1935 2012 1504 5*10^445773-1 445774 p297 2011 Near-repdigit 1505 395*2^1480715+1 445743 L1792 2012 1506 1293*2^1480046-1 445542 L1828 2013 1507 725*2^1479843+1 445480 L2627 2012 1508 4143*2^1479570-1 445399 L1959 2014 1509 2421*2^1479236+1 445298 p335 2012 1510 1185*2^1478556+1 445093 L2956 2012 1511 609*2^1478341+1 445028 L2987 2012 1512 29*2^1478344-1 445028 L10 2005 1513 705*2^1478286+1 445012 L1158 2012 1514 1071*2^1478005-1 444927 L1828 2013 1515 4127*2^1477320-1 444722 L1959 2014 1516 847*2^1477272+1 444707 L2935 2012 1517 138835*2^1476392+1 444444 L3494 2013 1518 27*2^1476347+1 444427 g279 2005 (**) 1519 1329*2^1476061-1 444342 L1828 2013 1520 163*2^1475932+1 444303 L2955 2012 1521 371*2^1475337+1 444124 L2958 2012 1522 1159*2^1475217-1 444088 L1828 2013 1523 333*2^1474766-1 443952 L1827 2011 1524 4025*2^1474366-1 443832 L1959 2014 1525 176660*18^353320-1 443519 p325 2011 Generalized Woodall (**) 1526 69*2^1473217-1 443485 L2055 2011 1527 327*2^1473201-1 443481 L1827 2011 1528 357*2^1473125-1 443458 L1819 2013 1529 1263*2^1472875-1 443383 L1828 2013 1530 127*2^1472718+1 443335 L2954 2012 1531 43994*6^569498-1 443161 p267 2010 1532 325627*2^1472117-1 443157 L111 2005 1533 1317*2^1471508-1 442972 L1828 2013 1534 133*2^1471408+1 442941 L2139 2012 (**) 1535 1197*2^1471378-1 442932 L1828 2013 1536 207*2^1471290+1 442905 L1300 2012 (**) 1537 579*2^1471002+1 442819 L2901 2012 1538 1291*2^1470905-1 442790 L1828 2013 1539 303*2^1470065+1 442537 L2058 2012 1540 629*2^1469471+1 442358 L1999 2012 1541 1155*2^1468763-1 442145 L1828 2013 1542 55*2^1468439-1 442046 L2074 2013 1543 1467763*2^1467763-1 441847 L381 2007 Woodall 1544 77*2^1467554-1 441780 L145 2006 1545 1073*2^1467421+1 441741 L2121 2012 1546 105*2^1467388-1 441730 L384 2010 1547 1295*2^1467128-1 441653 L1828 2013 1548 253*2^1465908+1 441285 L1498 2012 1549 279*2^1465658+1 441210 L2121 2012 (**) 1550 7673*2^1464988-1 441010 L2012 2013 1551 179*2^1464720-1 440927 L2074 2012 1552 4035*2^1463909-1 440685 L1959 2014 1553 533*2^1462557+1 440277 L1186 2012 1554 165*2^1462368-1 440219 L2101 2011 1555 565*2^1462336+1 440210 L2127 2012 1556 1193*2^1462209+1 440172 L2950 2012 1557 187*2^1461697-1 440017 L1959 2014 1558 99*2^1461496-1 439957 L282 2009 1559 821*2^1461453+1 439945 L2085 2012 1560 83*2^1461350-1 439913 L1959 2011 1561 647*2^1461075+1 439831 L2734 2012 1562 4073*2^1460504-1 439660 L1959 2014 1563 921*2^1460168+1 439558 L2412 2012 1564 1035*2^1460028-1 439516 L1828 2012 1565 4023*2^1459958-1 439495 L1959 2014 1566 4123*2^1459531-1 439367 L1959 2014 1567 361*2^1459308+1 439299 L1158 2012 Generalized Fermat 1568 315*2^1459160+1 439254 L2127 2012 1569 1003*2^1458560+1 439074 L1214 2012 1570 179*2^1457415+1 438728 L1224 2012 1571 505*2^1457394+1 438723 L2121 2012 1572 1179*2^1456957-1 438591 L1828 2012 1573 313*2^1456431-1 438432 L1809 2013 1574 301*2^1455620+1 438188 L1999 2012 1575 83*2^1455358-1 438109 L1959 2011 1576 701*2^1455225+1 438070 L2962 2012 1577 207*2^1453970-1 437691 L330 2013 1578 1085*2^1453676-1 437604 L1828 2012 1579 379*2^1453534+1 437560 L2826 2012 1580 281*2^1453426-1 437528 L2101 2012 1581 967*2^1453316+1 437495 L2856 2012 1582 21*2^1452771-1 437329 L503 2008 1583 911*2^1450865+1 436757 L1158 2012 1584 995*2^1450439+1 436629 L2139 2012 1585 1101*2^1450203-1 436558 L1828 2012 1586 1139*2^1450029+1 436506 L1509 2012 1587 9101981*2^1449942-1 436483 L1134 2013 1588 1121*2^1449665+1 436396 L2785 2012 1589 855*2^1449637+1 436388 L1336 2012 1590 77743*6^560745-1 436350 p267 2010 1591 909*2^1449002+1 436197 L2125 2012 1592 23*2^1448461+1 436032 L170 2008 1593 4061*2^1448270-1 435977 L1959 2014 1594 1027*2^1448217-1 435960 L1828 2013 1595 395*2^1447971+1 435886 L1935 2012 1596 1051*2^1447928+1 435873 L2949 2012 1597 10107*6^559967+1 435744 p254 2012 1598 1197*2^1447460-1 435732 L1828 2013 1599 969*2^1447062+1 435613 L1745 2012 1600 1195*2^1446859-1 435552 L1828 2013 1601 711*2^1446472+1 435435 L1224 2012 1602 1061*2^1445645+1 435186 L2863 2012 1603 1125*2^1445487-1 435138 L1828 2013 1604 8331405*2^1445428-1 435125 L260 2010 1605 923*2^1445405+1 435114 L2942 2012 1606 194*165^196199+1 435071 p289 2012 1607 4125*2^1445205-1 435054 L1959 2014 1608 1233*2^1445171-1 435043 L1828 2013 1609 1071*2^1444099-1 434721 L1828 2013 1610 855*2^1444094+1 434719 L2604 2012 1611 1321*2^1442749-1 434314 L1828 2013 1612 705*2^1442509+1 434242 L2085 2012 1613 4415*2^1441915+1 434064 L2012 2014 1614 345*2^1441905+1 434060 L2604 2012 1615 10*802^149319+1 433650 p268 2011 1616 589*2^1440410+1 433610 L1336 2012 1617 4039*2^1439371-1 433298 L1959 2014 1618 1073*2^1439352-1 433292 L1828 2013 1619 417*2^1439196+1 433244 L2604 2012 1620 851*2^1438625+1 433073 L1728 2012 1621 581*2^1438385+1 433000 L2604 2012 1622 637*2^1438112+1 432918 L1524 2012 1623 9135*2^1438018-1 432891 L2338 2013 1624 83*2^1437882-1 432848 L1959 2011 1625 133*2^1436963-1 432572 L2074 2014 1626 9135*2^1436354-1 432390 L2338 2013 1627 969*2^1435731+1 432202 L1509 2012 1628 210092*5^618136-1 432064 L2050 2011 1629 1377*2^1434985-1 431977 L1828 2013 1630 1135*2^1434722+1 431898 L1933 2012 1631 19*2^1434165-1 431728 L503 2008 1632 825*2^1433899+1 431650 L2127 2012 1633 95*2^1433853+1 431635 L2503 2011 Divides GF(1433852,3) 1634 213*2^1433675-1 431582 L1863 2013 1635 141*2^1433536+1 431540 L2560 2012 1636 987*2^1433326+1 431478 L1158 2012 1637 749*2^1433277+1 431463 L2941 2012 1638 825*2^1433131+1 431419 L1991 2012 1639 1255*2^1432761-1 431308 L1828 2013 1640 3303*112^210284+1 430922 p271 2012 1641 243*2^1431443-1 430910 L2055 2011 1642 1041*2^1431405+1 430899 L1229 2012 1643 729*2^1430906+1 430749 L2002 2011 Generalized Fermat 1644 1079*2^1430317+1 430572 L2940 2012 1645 1031*2^1430239+1 430548 L1129 2012 1646 1193*2^1430037+1 430488 L1555 2012 1647 2715*2^1429628-1 430365 L1959 2014 1648 675*2^1429386+1 430291 L1379 2012 1649 267*2^1429060-1 430193 L1828 2013 1650 1161*2^1428493-1 430023 L1828 2013 1651 45*2^1427666+1 429772 L1446 2010 1652 1127*2^1427558-1 429741 L1828 2013 1653 270748*5^614625-1 429610 L2050 2011 1654 147*2^1426959+1 429560 L2922 2012 1655 19681127*2^1426862-1 429536 L466 2012 1656 1023*2^1426490+1 429420 L1554 2012 1657 94550!-1 429390 p290 2010 Factorial (**) 1658 4137*2^1426269-1 429354 L1959 2014 1659 2018*162^194314-1 429344 p289 2012 1660 113*2^1425998-1 429271 L257 2008 1661 4091*2^1424962-1 428960 L1959 2014 1662 1129*2^1424494+1 428819 L2939 2012 1663 4039*2^1424325-1 428769 L1959 2014 1664 1077*2^1424277-1 428754 L1828 2013 1665 1169*2^1423969+1 428661 L2948 2012 1666 3462728^65536+1 428568 p343 2014 Generalized Fermat 1667 3461954^65536+1 428561 p316 2014 Generalized Fermat 1668 1299*2^1423389-1 428486 L1828 2013 1669 3446048^65536+1 428430 p316 2014 Generalized Fermat 1670 561*2^1423021+1 428375 L2945 2012 1671 555*2^1422674+1 428271 L2944 2012 (**) 1672 3422670^65536+1 428237 p316 2014 Generalized Fermat 1673 255*2^1422283-1 428153 L2074 2012 1674 21*2^1421741+1 427989 g279 2005 (**) 1675 537*2^1421571+1 427939 L2557 2012 1676 1335*2^1421366-1 427877 L1828 2013 1677 8*3^896701-1 427837 p258 2010 1678 65*2^1421088-1 427792 L1828 2011 1679 4089*2^1419992-1 427464 L1959 2014 1680 9*2^1419855-1 427420 L323 2009 1681 1425*2^1419356-1 427272 L1134 2013 1682 1047*2^1418968+1 427155 L2093 2012 1683 273*2^1418856+1 427121 L2674 2012 1684 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) (**) 1685 4023*2^1418518-1 427021 L1959 2014 1686 399*2^1418376-1 426977 L1819 2013 1687 371*2^1417702-1 426774 L1819 2013 1688 4017*2^1417682-1 426769 L1959 2014 1689 225*2^1417568+1 426733 L2947 2012 Generalized Fermat 1690 303*2^1416878+1 426526 L2937 2012 1691 29*2^1416873+1 426523 g305 2007 1692 61*2^1416365-1 426371 L2055 2011 1693 1113*2^1414802-1 425901 L1828 2013 1694 659*2^1414237+1 425731 L2453 2012 1695 149797*2^1414137-1 425703 L105 2005 1696 1087*2^1413982+1 425655 L2934 2012 1697 1031*2^1413801+1 425600 L2936 2012 1698 2415*2^1413627-1 425548 L1959 2014 1699 799*2^1413586+1 425535 L2142 2012 1700 266206*5^608649-1 425433 L2050 2011 1701 3095674^65536+1 425379 p343 2013 Generalized Fermat 1702 199*2^1412913-1 425332 L2074 2013 1703 1155*2^1411898-1 425027 L1828 2013 1704 1077*2^1411370-1 424868 L1828 2013 1705 1083*2^1410817+1 424702 L1562 2012 1706 339*2^1410789-1 424693 L1830 2011 1707 625*2^1410668+1 424657 L1498 2012 Generalized Fermat (**) 1708 1263*2^1409755-1 424382 L1828 2013 1709 445*2^1408906+1 424126 L2544 2012 (**) 1710 439*2^1408326+1 423952 L1546 2012 1711 93*2^1408246+1 423927 L1207 2011 1712 165*2^1408117+1 423888 L2935 2012 1713 105*2^1407665-1 423752 L384 2009 1714 1485*2^1407544+1 423717 L1134 2013 1715 245*2^1407538-1 423714 L1862 2014 1716 55*2^1406997-1 423551 L1884 2011 1717 143*2^1406788-1 423488 L1828 2012 1718 141*2^1404747+1 422874 L1158 2012 1719 2829122^65536+1 422816 p343 2012 Generalized Fermat 1720 2985*2^1404274-1 422733 L1959 2014 1721 4143*2^1404267-1 422731 L1959 2014 1722 2715*2^1404211-1 422714 L1959 2014 1723 4065*2^1403376-1 422462 L1959 2014 1724 2779470^65536+1 422312 p343 2012 Generalized Fermat 1725 435*2^1402809+1 422291 L2938 2012 1726 647*2^1402275+1 422130 L1158 2012 1727 1101*2^1402221+1 422114 L2168 2012 1728 1055*2^1402194-1 422106 L1828 2013 1729 2744940^65536+1 421956 p343 2012 Generalized Fermat 1730 2738848^65536+1 421893 p343 2012 Generalized Fermat 1731 1131*2^1401172+1 421798 L1456 2012 1732 48697*2^1400872+1 421710 L2012 2014 1733 573*2^1400092+1 421473 L2949 2012 1734 429*2^1400083+1 421470 L2930 2012 (**) 1735 881*2^1399963+1 421434 L1224 2012 1736 23*2^1399841+1 421396 L1158 2011 1737 127*2^1398889-1 421110 L486 2008 1738 241*2^1398869-1 421104 L1828 2013 1739 2985*2^1398863-1 421104 L1959 2014 1740 125*2^1398712-1 421057 L2101 2012 1741 219*2^1398411+1 420966 L1336 2012 (**) 1742 1564347*2^1398269-1 420928 L466 2008 1743 509765*2^1398269+1 420927 L109 2014 1744 31723*2^1398273-507567 420927 p363 2013 (**) 1745 2^1398269-1 420921 G1 1996 Mersenne 35 (**) 1746 765*2^1398051+1 420859 L2932 2012 1747 2925*2^1396366-1 420352 L1959 2014 1748 192089*2^1395688-1 420150 L49 2004 1749 225*2^1395649-1 420135 L2074 2012 1750 85*2^1395605-1 420121 L2338 2011 1751 4099*2^1395419-1 420067 L1959 2014 1752 1137*2^1395352-1 420046 L1828 2013 1753 935*2^1394813+1 419884 L2863 2012 1754 4073*2^1394704-1 419852 L1959 2014 1755 147*2^1392930+1 419316 L2931 2012 (**) 1756 2484264^65536+1 419116 p343 2012 Generalized Fermat 1757 2^1392250-4*V(1,4,696123)+1 419110 x41 2014 (**) 1758 2483590^65536+1 419108 p316 2012 Generalized Fermat 1759 1387*2^1390577-1 418609 L1828 2013 1760 1151*2^1390169+1 418486 L1336 2012 1761 891*2^1390163+1 418484 L2562 2012 1762 77*2^1390004-1 418435 L2074 2011 1763 869*2^1389895+1 418404 L1480 2012 1764 113*2^1389674-1 418336 L257 2008 1765 1073*2^1389616-1 418320 L1828 2013 1766 953*2^1389449+1 418269 L1935 2012 1767 182402*14^364804-1 418118 p325 2011 Generalized Woodall (**) 1768 2835*2^1388678-1 418038 L1959 2014 1769 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 1770 4129*2^1388319-1 417930 L1959 2013 1771 413*2^1387625+1 417720 L1357 2012 1772 4185*2^1387491-1 417681 L1959 2013 1773 1169*2^1387289+1 417619 L2927 2012 1774 2336976^65536+1 417377 p316 2012 Generalized Fermat 1775 805*2^1386368+1 417342 L2926 2012 1776 675*2^1386270+1 417312 L2093 2012 1777 771*2^1385696+1 417139 L2110 2012 1778 2313394^65536+1 417088 p316 2011 Generalized Fermat 1779 427*2^1385238+1 417001 L1204 2012 1780 409*2^1384346+1 416733 L1357 2012 (**) 1781 4119*2^1383765-1 416559 L1959 2013 1782 1047*2^1383252-1 416404 L1828 2013 1783 89*2^1383108-1 416359 L1884 2011 1784 2251082^65536+1 416311 p316 2011 Generalized Fermat 1785 999*2^1382497+1 416177 L1524 2012 1786 491*2^1382361+1 416135 L2167 2012 1787 1077*2^1382270-1 416108 L1828 2013 1788 4041*2^1382149-1 416072 L1959 2013 1789 487*2^1382068+1 416047 L2925 2012 1790 4005*2^1381901-1 415998 L1959 2013 1791 413*2^1381686-1 415932 L1978 2014 1792 4099*2^1381491-1 415874 L1959 2013 1793 1001*2^1381338-1 415828 L1828 2013 1794 609*2^1380766+1 415655 L2785 2012 1795 2187182^65536+1 415491 g260 2009 Generalized Fermat 1796 2355*2^1379854-1 415381 L1959 2014 1797 2177038^65536+1 415359 g260 2008 Generalized Fermat 1798 199*2^1379329-1 415222 L2074 2012 1799 2162068^65536+1 415162 g260 2008 Generalized Fermat 1800 1209*2^1378600-1 415004 L1828 2013 1801 1041*2^1377936+1 414804 L1158 2012 1802 653*2^1377857+1 414780 L2887 2012 1803 1395*2^1377793-1 414761 L1828 2013 1804 2445*2^1377351-1 414628 L1959 2014 1805 6*10^414508-1 414509 p297 2011 Near-repdigit 1806 139*2^1376635-1 414411 L384 2013 1807 4143*2^1376590-1 414399 L1959 2013 1808 151*2^1376256+1 414297 L1751 2011 1809 129*2^1376223-1 414287 L1959 2011 1810 1005*2^1375758+1 414148 L2606 2012 1811 481*2^1374765-1 413849 L1978 2014 1812 65*2^1374574-1 413790 L2055 2011 1813 163*2^1374474+1 413761 L2933 2012 (**) 1814 147*2^1374216-1 413683 L1959 2011 1815 (2^64-189)*10^413500+1 413520 p342 2012 1816 981*2^1373643+1 413511 L2125 2012 1817 231*2^1372505+1 413168 L2169 2012 1818 347*2^1372215+1 413081 L2085 2012 1819 321*2^1371846-1 412970 L1830 2011 1820 237*2^1371630-1 412905 L1828 2013 1821 4179*2^1371539-1 412879 L1959 2013 1822 2895*2^1371308-1 412809 L1959 2014 1823 73*2^1370742+1 412637 g418 2009 1824 955*2^1369986+1 412410 L2928 2012 1825 4035*2^1369909-1 412388 L1959 2013 1826 195*2^1369746-1 412337 L2101 2011 1827 771*2^1369709+1 412327 L2453 2012 1828 1169*2^1369516-1 412269 L1828 2013 1829 1235*2^1369070-1 412135 L1828 2013 1830 1055*2^1368554-1 411979 L1828 2013 1831 15*2^1368428+1 411940 g279 2006 (**) 1832 609*2^1368375+1 411925 L2946 2012 1833 243*2^1368212-1 411876 L2055 2011 1834 663*2^1368094-1 411841 L2519 2014 1835 1093*2^1367891-1 411780 L1828 2013 1836 789*2^1367445+1 411645 L2030 2012 1837 245*2^1367128-1 411549 L1862 2011 1838 51017*6^528803-1 411494 p258 2010 1839 237*2^1366717-1 411426 L1828 2013 1840 955*2^1366700+1 411421 L2929 2012 1841 778*73^220782+1 411392 L587 2013 1842 497*2^1366295+1 411299 L2915 2012 1843 1085*2^1366270-1 411292 L1828 2013 1844 2325*2^1366249-1 411286 L1959 2014 1845 585*2^1366140-1 411252 L1816 2014 1846 815*2^1365752-1 411136 L1809 2014 1847 1695*2^1365701+1 411121 L527 2014 1848 1874512^65536+1 411101 g413 2008 Generalized Fermat 1849 933*2^1365580-1 411084 L1809 2014 1850 1055*2^1365519+1 411066 L2453 2012 1851 77*2^1365452-1 411044 L2074 2011 1852 45*2^1365167+1 410958 L1446 2010 1853 273*2^1365107-1 410941 L1828 2013 1854 241489*2^1365062+1 410930 L101 2005 1855 19861029*2^1365009-1 410916 L895 2012 1856 869*2^1364737+1 410830 L2924 2012 1857 321*2^1363671-1 410509 L1830 2011 1858 555*2^1363577+1 410481 L2413 2012 1859 1383*2^1363428-1 410436 L1828 2013 1860 897*2^1363405-1 410429 L1809 2014 1861 1828502^65536+1 410393 GF2 2005 Generalized Fermat 1862 411*2^1363094-1 410335 L1816 2014 1863 1035*2^1362722-1 410224 L1828 2013 1864 171*2^1362662-1 410205 L1959 2011 1865 107*2^1362654-1 410202 L621 2009 1866 301016*5^586858-1 410202 L2050 2011 1867 1123*2^1361432+1 409835 L1300 2012 1868 47395*2^1361124+1 409744 L2012 2014 1869 857*2^1360690-1 409612 L1809 2014 1870 885*2^1359353-1 409209 L1809 2014 1871 629*2^1359164-1 409152 L2257 2014 1872 51*2^1358372+1 408913 L1446 2010 (**) 1873 87*2^1358189-1 408858 L2055 2011 1874 939*2^1358015-1 408807 L1809 2014 1875 205*2^1358016+1 408806 L1745 2012 1876 35*2^1357881+1 408765 g279 2006 (**) 1877 2*11171^100961+1 408700 g427 2014 Divides Phi(11171^100961,2) 1878 203*2^1357425+1 408628 L1201 2012 1879 63*2^1357156-1 408547 L1828 2011 1880 1455*2^1357070+1 408522 L1134 2012 1881 63*2^1356980+1 408494 L181 2011 1882 7176*29^279240+1 408364 g103 2011 1883 4133*2^1356364-1 408310 L1959 2013 1884 273*2^1356347-1 408304 L1828 2013 1885 223*2^1356316+1 408295 L1158 2012 1886 723*2^1355919-1 408176 L1809 2014 1887 4233*22^304046+1 408162 L1471 2013 1888 205*2^1355814+1 408143 L2413 2012 1889 347*2^1355595+1 408078 L2913 2012 1890 357*2^1355535+1 408060 L2873 2012 (**) 1891 212909*46^245362-1 407983 p255 2014 1892 299*2^1355004-1 407900 L426 2009 1893 771*2^1354880+1 407863 L2919 2012 1894 338707*2^1354830+1 407850 L124 2005 Cullen 1895 199*2^1354385-1 407713 L2074 2012 1896 1343*2^1354316-1 407693 L1828 2013 1897 195*2^1354264+1 407677 L2413 2012 1898 8331405*2^1353931-1 407581 L260 2010 1899 703*2^1353866+1 407558 L2659 2012 1900 99*2^1353457+1 407434 L1675 2011 (**) 1901 4151*2^1353222-1 407365 L1959 2013 1902 763*2^1352872+1 407258 L2121 2012 1903 30*939^137000+1 407257 L1471 2013 1904 1155*2^1352821+1 407243 L2921 2012 1905 367*2^1352793-1 407234 L1830 2013 1906 1345*2^1352629-1 407186 L1828 2013 1907 1085*2^1352556-1 407163 L1828 2013 1908 651*2^1352397-1 407115 L1817 2014 1909 273*2^1352006-1 406997 L1828 2013 1910 631*2^1351932+1 406975 L1115 2012 1911 915*2^1351847-1 406950 L1809 2014 1912 999*2^1351487-1 406842 L1809 2014 1913 709*2^1351346+1 406799 L2604 2012 1914 539*2^1350581+1 406569 L2951 2012 (**) 1915 837*2^1350463+1 406533 L1745 2012 1916 1157*2^1350311+1 406488 L2923 2012 1917 441*2^1350261-1 406472 L1978 2014 1918 1005*2^1349820+1 406340 L2920 2012 1919 195*2^1349818+1 406338 L1204 2012 1920 4065*2^1349206-1 406156 L1959 2013 1921 269*2^1348497+1 405941 L2916 2012 1922 951*2^1348210-1 405855 L1809 2014 1923 1075*2^1348100+1 405822 L2453 2012 (**) 1924 975*2^1347675+1 405694 L2952 2012 1925 1540550^65536+1 405516 GF2 2003 Generalized Fermat 1926 1191*2^1346923-1 405468 L1828 2013 1927 1087*2^1346917-1 405466 L121 2010 1928 765*2^1346535+1 405351 L2413 2012 1929 361*2^1346489-1 405337 L1819 2013 1930 4065*2^1346405-1 405312 L1959 2013 1931 1063959*2^1346269-1 405274 L466 2013 1932 721*2^1346084+1 405215 L1387 2012 1933 931*2^1344712+1 404802 L1115 2012 1934 15*2^1344313-1 404680 L139 2007 1935 1169*2^1344265+1 404668 L2922 2012 1936 319*2^1344059-1 404605 L1819 2013 1937 553*2^1344056+1 404604 L2943 2012 1938 693*2^1343535-1 404448 L1817 2014 1939 1483076^65536+1 404434 GF2 2003 Generalized Fermat 1940 11*2^1343347+1 404389 p169 2005 Divides GF(1343346,6) 1941 1321*2^1343213-1 404351 L1828 2013 1942 1478036^65536+1 404337 GF2 2002 Generalized Fermat 1943 1315*2^1342783-1 404222 L1828 2013 1944 607*2^1342336+1 404087 L2675 2012 (**) 1945 941*2^1341569+1 403856 L1204 2012 1946 909*2^1341455-1 403822 L1817 2014 1947 777*2^1340901-1 403655 L1817 2014 1948 1079*2^1340511+1 403538 L1336 2012 1949 875*2^1340454-1 403520 L1809 2014 1950 1197*2^1340338+1 403486 L2525 2012 1951 487*2^1340126+1 403421 L1158 2012 1952 115*2^1338620+1 402967 L1751 2011 1953 921*2^1338408+1 402904 L1204 2012 1954 1261*2^1338371-1 402893 L1828 2012 1955 801*2^1338298-1 402871 L2257 2014 1956 1099*2^1338041-1 402794 L1828 2012 1957 89*2^1338001+1 402781 L1223 2011 1958 2685*2^1337858-1 402739 L1959 2014 1959 835*2^1337808+1 402724 L1158 2012 1960 2265*2^1337778-1 402715 L1959 2014 1961 1309*2^1337417-1 402606 L1828 2012 1962 54767*2^1337287+1 402569 SB5 2002 1963 403*2^1337280+1 402564 L1741 2012 1964 407*2^1337203+1 402541 L1972 2012 1965 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 1966 1295*2^1337012-1 402484 L1828 2012 1967 143*2^1336358-1 402286 L1828 2012 1968 933*2^1336282+1 402264 L2918 2012 1969 1374038^65536+1 402260 GF3 2003 Generalized Fermat 1970 863*2^1336093+1 402208 L1480 2012 1971 203*2^1335989+1 402176 L1204 2012 1972 345*2^1335896+1 402148 L1158 2012 1973 81*2^1335675-1 402081 L268 2008 1974 919*2^1335567-1 402049 L1817 2014 1975 739*2^1335442+1 402011 L2085 2012 1976 1361846^65536+1 402007 GF3 2002 Generalized Fermat 1977 335*2^1335337+1 401980 L1776 2012 1978 619*2^1335307-1 401971 L1817 2014 1979 83110*151^184411+1 401833 p365 2013 1980 1065*2^1334660-1 401776 L1828 2012 1981 177*2^1334422-1 401704 L2101 2012 1982 587*2^1333710-1 401490 L1978 2014 1983 87*2^1332741-1 401197 L1828 2011 1984 1293*2^1332159-1 401023 L1828 2012 1985 231*2^1332103-1 401006 L1862 2013 1986 725*2^1331970-1 400966 L1817 2014 1987 8331405*2^1331801-1 400919 L260 2010 1988 261*2^1331356+1 400781 L2873 2012 1989 9009*2^1330663+1 400574 L2125 2014 1990 921*2^1330248+1 400448 L1204 2012 1991 9217*2^1329898+1 400344 L3984 2014 1992 18*683^141239+1 400333 p258 2013 1993 1341*2^1328829-1 400021 L1828 2012 1994 1266062^65536+1 399931 g295 2002 Generalized Fermat 1995 445*2^1328250+1 399846 L1533 2012 1996 791*2^1327974-1 399763 L2257 2014 1997 1293*2^1327556-1 399638 L1828 2012 1998 169*2^1327114+1 399504 L2659 2012 Generalized Fermat 1999 999*2^1326500-1 399320 L1809 2014 2000 9701*2^1326397+1 399290 L2826 2014 2001 9941*2^1325721+1 399086 L1115 2014 2002 957*2^1325706+1 399081 L1741 2012 2003 1275*2^1325641-1 399061 L1828 2012 2004 9843*2^1325436+1 399000 L2125 2014 2005 341*2^1325277+1 398951 L2879 2012 2006 19*2^1325245-1 398940 L121 2010 2007 9621*2^1325084+1 398895 L2125 2014 2008 9639*2^1324483+1 398714 L2038 2014 2009 9025*2^1324388+1 398685 L3824 2014 Generalized Fermat 2010 827*2^1324334-1 398668 L1809 2014 2011 863*2^1324270-1 398648 L1817 2014 2012 1089*2^1323857-1 398524 L1828 2012 2013 765*2^1323402-1 398387 L2257 2014 2014 627*2^1323336-1 398367 L2257 2014 2015 113966*6^511831+1 398287 L1471 2012 2016 311*2^1323071+1 398287 L1745 2012 2017 897*2^1322843+1 398219 L2562 2012 2018 9477*2^1322831+1 398216 L3981 2014 2019 "15238445279350815802...(398164 other digits)...70851559196354845061" 398204 p44 2013 (**) 2020 1221*2^1322591-1 398143 L1828 2012 2021 9891*2^1322176+1 398019 L3912 2014 2022 1371*2^1322077-1 397988 L1828 2012 2023 6975*2^1321778-1 397899 L1862 2014 2024 427*2^1321706+1 397876 L2879 2012 2025 1245*2^1321376-1 397777 L1828 2012 2026 9191*2^1321373+1 397777 L2707 2014 2027 471*2^1320865+1 397623 L1935 2012 (**) 2028 9615*2^1320610+1 397548 L3889 2014 2029 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 2030 9669*2^1320277+1 397447 L3035 2014 2031 2925*2^1319977-1 397357 L1959 2014 2032 363*2^1319756+1 397289 L2873 2012 2033 759*2^1319718+1 397278 L1209 2012 2034 4025*2^1319326-1 397161 L1959 2013 2035 9585*2^1319318+1 397159 L3980 2014 2036 525806!7+1 397102 p3 2012 Multifactorial 2037 375*2^1319127-1 397100 L1830 2013 2038 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen (**) 2039 4121*2^1318570-1 396933 L1959 2013 2040 411*2^1318421-1 396887 L3844 2014 2041 723*2^1318416+1 396886 L1204 2012 2042 9035*2^1318299+1 396852 L3037 2014 2043 2565*2^1318176-1 396814 L1959 2014 2044 513*2^1318074-1 396783 L3844 2014 2045 687*2^1318064-1 396780 L1817 2014 2046 9065*2^1317889+1 396729 L3464 2014 2047 289*2^1317378+1 396573 L1132 2012 Generalized Fermat 2048 1225*2^1317269-1 396541 L1828 2012 2049 269*2^1317053+1 396475 L1519 2012 2050 4037*2^1316934-1 396441 L1959 2013 2051 250463*2^1316921+1 396439 L764 2010 2052 451*2^1316832+1 396409 L1158 2012 2053 69*2^1316758+1 396386 L1446 2011 (**) 2054 4059*2^1316549-1 396325 L1959 2013 2055 28*731^138318+1 396133 L1471 2012 2056 431*2^1315773+1 396090 L1158 2012 2057 1105*2^1314586+1 395733 L2139 2012 2058 2775*2^1314555-1 395724 L1959 2014 2059 9277*2^1314550+1 395723 L2549 2014 2060 1087540^65536+1 395605 p320 2011 Generalized Fermat 2061 987*2^1314127+1 395595 L2891 2012 2062 15266*12^366385-1 395401 p325 2011 Generalized Woodall (**) 2063 7605*2^1313276-1 395340 L2074 2013 2064 9357*2^1313151+1 395302 L2549 2014 2065 1110*366^154149-1 395162 L2054 2011 2066 9215*2^1312317+1 395051 L2981 2014 2067 9867*2^1312294+1 395044 L2549 2014 2068 30994*5^565095-1 394989 p280 2011 2069 357*2^1311930+1 394933 L2085 2012 2070 1097*2^1311771+1 394886 L2912 2012 2071 1057476^65536+1 394807 g197 2002 Generalized Fermat 2072 9155*2^1311239+1 394727 L3750 2014 2073 1015*2^1311187-1 394710 L1828 2012 2074 639*2^1310707+1 394565 L2117 2012 2075 1001184681*2^1310640+1 394551 p221 2009 2076 250107985*2^1310642+1 394551 p221 2009 2077 9835*2^1310554+1 394521 L3954 2014 2078 165054615*2^1310205-1 394420 L2055 2013 2079 395*2^1309751+1 394277 L2826 2012 2080 4175*2^1309492-1 394200 L1959 2013 2081 763*2^1309300+1 394142 L2413 2012 2082 9859*2^1309194+1 394111 L1741 2014 2083 1171*2^1309048+1 394066 L2705 2012 2084 9257*2^1308839+1 394004 L3035 2014 2085 1024390^65536+1 393902 g299 2003 Generalized Fermat 2086 1157*2^1308162-1 393800 L1828 2012 2087 55*2^1308148+1 393794 L1446 2011 (**) 2088 9835*2^1307914+1 393726 L3976 2014 2089 4059*2^1307909-1 393724 L1959 2013 2090 841*2^1307465-1 393590 L1817 2014 2091 399*2^1307450+1 393585 L2659 2012 2092 165054615*2^1307270-1 393536 L2055 2013 2093 9535*2^1307240+1 393523 L3149 2014 2094 351*2^1306875+1 393412 L2562 2012 2095 1329*2^1306295-1 393238 L1828 2012 2096 135*2^1306036+1 393159 L1130 2012 2097 1105*2^1305693-1 393056 L1828 2012 2098 9101*2^1305587+1 393025 L1741 2014 2099 1485*2^1305359-1 392956 L1134 2012 2100 9089*2^1305189+1 392905 L3889 2014 2101 154801*2^1305084+1 392875 L764 2010 2102 9747*2^1304898+1 392818 L3974 2014 2103 945*2^1304747+1 392771 L1204 2012 2104 83*500^145465+1 392608 p355 2012 2105 24217*2^1304085-1 392574 L2055 2012 2106 19581121*2^1303821-1 392497 p49 2009 2107 897*2^1303608+1 392429 L1158 2012 2108 379*2^1302991-1 392242 L1819 2013 2109 609*2^1302898+1 392215 L1933 2012 2110 1695*2^1302827+1 392194 L527 2013 2111 117*2^1302764-1 392174 L1959 2011 2112 9087*2^1302232+1 392015 L3973 2014 2113 9003*2^1302208+1 392008 L2549 2014 2114 2925*2^1302041-1 391957 L1862 2013 2115 1185*2^1301930+1 391924 L1745 2012 2116 849*2^1301920-1 391920 L2257 2014 2117 429*2^1301821+1 391890 L2914 2012 (**) 2118 357*2^1301704-1 391855 L1819 2013 2119 9597*2^1301687+1 391851 L2826 2014 2120 9197*2^1301263+1 391724 L3464 2014 2121 81112*151^179764+1 391707 p365 2013 2122 9037*2^1301022+1 391651 L3970 2014 2123 9425*2^1300695+1 391553 L3972 2014 2124 4037*2^1300604-1 391525 L1959 2013 2125 219259*2^1300450+1 391480 L635 2010 2126 205*2^1300401-1 391463 L384 2010 2127 587*2^1300051+1 391358 L2085 2012 2128 8909*2^1299997+1 391343 L3972 2014 2129 93*2^1299926+1 391319 L1446 2011 2130 5665*2^1299918+1 391319 L3877 2014 2131 627*2^1299702+1 391253 L1415 2011 2132 7851*2^1299663+1 391242 L1741 2014 2133 8829*2^1299595+1 391222 L2659 2014 2134 6675*2^1299554+1 391209 L2038 2014 2135 1011*2^1299555+1 391209 L2805 2011 2136 4225*2^1299536+1 391203 L3968 2014 Generalized Fermat 2137 151026*5^559670-1 391198 p307 2010 2138 9089*2^1299503+1 391194 L3969 2014 2139 607*2^1299277-1 391125 L1817 2014 2140 8747*2^1299219+1 391108 L2517 2014 2141 4855*2^1299102+1 391073 L2322 2014 2142 7329*2^1298886+1 391008 L2549 2014 2143 567*2^1298854-1 390997 L1817 2013 2144 9465*2^1298746+1 390966 L3965 2014 2145 8293*2^1298662+1 390941 L3037 2014 2146 3121*2^1298644+1 390935 L1408 2014 2147 615*2^1298251+1 390816 L2826 2011 2148 25*2^1298186+1 390795 g279 2005 Generalized Fermat 2149 1543*2^1297952+1 390726 L3575 2014 2150 5991*2^1297916+1 390716 L3271 2014 2151 8331405*2^1297878-1 390708 L260 2010 2152 6387*2^1297872+1 390703 L1129 2014 2153 8755*2^1297752+1 390667 L1204 2014 2154 3149*2^1297441+1 390573 L3957 2014 2155 393*2^1297402-1 390560 L644 2011 2156 1719*2^1297390+1 390557 L1792 2014 2157 9309*2^1297370+1 390552 L2322 2014 2158 2937*2^1297266+1 390520 L1741 2014 2159 6953*2^1297169+1 390491 L3924 2014 2160 4251*2^1296877+1 390403 L2117 2014 2161 8427*2^1296523+1 390297 L2117 2014 2162 6231*2^1296449+1 390274 L3953 2014 2163 4085*2^1296362-1 390248 L1959 2013 2164 9039*2^1296293+1 390228 L3575 2014 2165 2001*2^1296278-1 390222 L3345 2014 2166 8621*2^1296157+1 390187 L1741 2014 2167 5107*2^1296156+1 390186 L3035 2014 (**) 2168 3277*2^1296136+1 390180 L2038 2014 2169 6489*2^1296099+1 390169 L3727 2014 2170 3938*5^558032-1 390052 p304 2010 2171 5855*2^1295459+1 389976 L3317 2014 2172 1215*2^1295400-1 389958 L1828 2012 2173 8379*2^1295315+1 389933 L3924 2014 2174 6855*2^1295262+1 389917 L2549 2014 2175 4089*2^1295163+1 389887 L3514 2014 2176 9151*2^1295144+1 389882 L3035 2014 2177 507*2^1295094-1 389865 L1817 2013 2178 149*2^1295061+1 389855 L1751 2011 2179 4599*2^1295006+1 389840 L3297 2014 2180 4985*2^1295001+1 389838 L3781 2014 2181 7839*2^1294999+1 389838 L1741 2014 2182 3627*2^1294954+1 389824 L1823 2014 2183 877*2^1294833-1 389787 L1817 2014 2184 8961*2^1294615+1 389722 L1792 2014 2185 8605*2^1294532+1 389697 L3035 2014 2186 8947*2^1294516+1 389693 L3781 2014 2187 1011*2^1294485+1 389682 L2659 2011 2188 2549*2^1294471+1 389679 L2487 2014 2189 18*189^171175+1 389675 p289 2012 2190 731*2^1294414-1 389661 L1817 2014 2191 5229*2^1294390+1 389654 L2038 2014 2192 5639*2^1294383+1 389652 L2125 2014 2193 6433*2^1294154+1 389583 L3952 2014 2194 1895*2^1294093+1 389565 L2549 2014 2195 3703*2^1294030+1 389546 L3317 2014 (**) 2196 6537*2^1293982+1 389532 L3951 2014 2197 3299*2^1293979+1 389531 L3924 2014 2198 3471*2^1293890-1 389504 L1973 2013 2199 125132*6^500528-1 389492 L2777 2012 Generalized Woodall (**) 2200 6933*2^1293849+1 389492 L3813 2014 2201 3735*2^1293813+1 389481 L3294 2014 2202 5421*2^1293797+1 389476 L3781 2014 2203 4041*2^1293777+1 389470 L1379 2014 2204 6921*2^1293756+1 389464 L3813 2014 2205 4009*2^1293751-1 389462 L1959 2013 2206 799*2^1293702+1 389447 L1793 2011 2207 563*2^1293468-1 389376 L1817 2013 2208 9375*2^1293381+1 389351 L2322 2014 2209 1655*2^1293309+1 389329 L1823 2014 2210 8353*2^1293256+1 389313 L3035 2014 2211 6131*2^1293217+1 389301 L2549 2014 2212 8079*2^1293070+1 389257 L2038 2014 2213 1611*2^1293069+1 389256 L3924 2014 2214 1077*2^1293068+1 389256 L2826 2011 2215 399*2^1293056-1 389252 L644 2010 2216 397*2^1293028+1 389243 L2127 2012 2217 3295*2^1292940+1 389218 L3317 2014 2218 9601*2^1292912+1 389210 L3960 2014 2219 1029*2^1292517-1 389090 L1828 2012 2220 6707*2^1292499+1 389085 L3945 2014 2221 2273*2^1292481+1 389079 L2549 2014 2222 8217*2^1292446+1 389069 L1792 2014 2223 99*2^1292395-1 389052 L282 2008 2224 8031*2^1292364+1 389045 L3956 2014 2225 6277*2^1292320+1 389031 L3954 2014 2226 3045*2^1292254+1 389011 L3035 2014 2227 7973*2^1292245+1 389009 L3658 2014 2228 8745*2^1292055+1 388952 L2826 2014 2229 1327*2^1292042+1 388947 L1741 2014 2230 3695*2^1291985+1 388930 L3035 2014 2231 5619*2^1291818+1 388880 L3947 2014 2232 5157*2^1291734+1 388855 L1502 2014 2233 857678^65536+1 388847 GF0 2002 Generalized Fermat 2234 6203*2^1291693+1 388843 L3813 2014 2235 4995*2^1291664+1 388834 L3278 2014 2236 4203*2^1291584+1 388810 L2826 2014 2237 3747*2^1291527+1 388792 L3317 2014 2238 9463*2^1291430+1 388764 L1204 2014 2239 3375*2^1291400+1 388754 L3878 2014 2240 7701*2^1291396+1 388753 L3034 2014 2241 475*2^1291353-1 388739 L1817 2013 2242 5281*2^1291292+1 388722 L3278 2014 2243 7851*2^1291269+1 388715 L3483 2014 2244 3405*2^1291254+1 388710 L3877 2014 2245 141*2^1291195+1 388691 L2910 2012 2246 6143*2^1291125+1 388672 L3950 2014 2247 1989*2^1291102+1 388664 L3317 2014 2248 4389*2^1291081+1 388658 L2125 2014 2249 9421*2^1290884+1 388599 L1204 2014 2250 1897*2^1290764+1 388562 L3945 2014 2251 3445*2^1290692+1 388541 L3797 2014 2252 8727*2^1290682+1 388538 L1823 2014 2253 2125*2^1290570+1 388504 L3713 2014 2254 5947*2^1290492+1 388481 L1741 2014 2255 2375*2^1290455+1 388470 L2918 2014 2256 8293*2^1290438+1 388465 L1408 2014 2257 6395*2^1290425+1 388461 L2826 2014 2258 3363*2^1290413+1 388457 L2038 2014 2259 475*2^1290255-1 388409 L1817 2013 2260 296642715*2^1290222+1 388404 L3494 2014 2261 5151*2^1290203+1 388394 L2549 2014 2262 843832^65536+1 388384 GF0 2001 Generalized Fermat 2263 5739*2^1290106+1 388365 L1823 2014 2264 1587674268045*2^1290000-1 388341 L3985 2014 2265 1587469977597*2^1290000-1 388341 L3985 2014 2266 1587287135595*2^1290000-1 388341 L3380 2014 2267 1585533761667*2^1290000-1 388341 L3983 2014 2268 1585321563135*2^1290000-1 388341 L994 2014 2269 1584766165965*2^1290000-1 388341 L2420 2014 2270 1583692200387*2^1290000-1 388341 L927 2014 2271 1581253784997*2^1290000-1 388341 L3982 2014 2272 1577856218295*2^1290000-1 388341 L3602 2014 2273 1577176243725*2^1290000-1 388341 L2035 2014 2274 1577058457515*2^1290000-1 388341 L3392 2014 2275 1576465403037*2^1290000-1 388341 L2482 2014 2276 1575244736985*2^1290000-1 388341 L927 2014 2277 1568097508287*2^1290000-1 388341 L3979 2014 2278 1567597976175*2^1290000-1 388341 L2511 2014 2279 1567525961685*2^1290000-1 388341 L1617 2014 2280 1567042170507*2^1290000-1 388341 L2035 2014 2281 1566966882855*2^1290000-1 388341 L2035 2014 2282 1565533778877*2^1290000-1 388341 L3978 2014 2283 1564313219205*2^1290000-1 388341 L3977 2014 2284 1563874436187*2^1290000-1 388341 L3492 2014 2285 1562830611177*2^1290000-1 388341 L3392 2014 2286 1561837109607*2^1290000-1 388341 L2035 2014 2287 1560753020697*2^1290000-1 388341 L3892 2014 2288 1559503935657*2^1290000-1 388341 L3498 2014 2289 1559498290047*2^1290000-1 388341 L3399 2014 2290 1558043056755*2^1290000-1 388341 L2035 2014 2291 1557283937337*2^1290000-1 388341 L3971 2014 2292 1556802123285*2^1290000-1 388341 L3392 2014 2293 1556557978677*2^1290000-1 388341 L927 2014 2294 1555446049755*2^1290000-1 388341 L2482 2014 2295 1553417731827*2^1290000-1 388341 L3940 2014 2296 1550729418357*2^1290000-1 388341 L927 2014 2297 1550646422607*2^1290000-1 388341 L927 2014 2298 1545742216557*2^1290000-1 388341 L2320 2014 2299 1545567752157*2^1290000-1 388341 L3529 2014 2300 1542556412817*2^1290000-1 388341 L2506 2014 2301 1540388178117*2^1290000-1 388341 L2511 2014 2302 1540020118947*2^1290000-1 388341 L3966 2014 2303 1539923124087*2^1290000-1 388341 L3203 2014 2304 1536790007937*2^1290000-1 388341 L3392 2014 2305 1536423910455*2^1290000-1 388341 L2443 2014 2306 1534157809947*2^1290000-1 388341 L3963 2014 2307 1531088788827*2^1290000-1 388341 L3962 2014 2308 1528540601175*2^1290000-1 388341 L3918 2014 2309 1527349729677*2^1290000-1 388341 L3203 2014 2310 1526542311675*2^1290000-1 388341 L2035 2014 2311 1524769328007*2^1290000-1 388341 L1909 2014 2312 1524124034925*2^1290000-1 388341 L2511 2014 2313 1524049816215*2^1290000-1 388341 L2443 2014 2314 1523322690417*2^1290000-1 388341 L3959 2014 2315 1521970820697*2^1290000-1 388341 L3392 2014 2316 1520901329535*2^1290000-1 388341 L395 2014 2317 1520831269527*2^1290000-1 388341 L3203 2014 2318 1520778103647*2^1290000-1 388341 L2511 2014 2319 1519083697635*2^1290000-1 388341 L3392 2014 2320 1518186147735*2^1290000-1 388341 L3819 2014 2321 1518149186097*2^1290000-1 388341 L3811 2014 2322 1517602360305*2^1290000-1 388341 L3958 2014 2323 1515002300457*2^1290000-1 388341 L3955 2014 2324 1514505008175*2^1290000-1 388341 L3765 2014 2325 1514127097215*2^1290000-1 388341 L3429 2014 2326 1513688541435*2^1290000-1 388341 L3203 2014 2327 1512054421185*2^1290000-1 388341 L3392 2014 2328 1511400664317*2^1290000-1 388341 L2511 2014 2329 1509977233767*2^1290000-1 388341 L3492 2014 2330 1508513103375*2^1290000-1 388341 L2035 2014 2331 1507827741387*2^1290000-1 388341 L3337 2014 2332 1506075167385*2^1290000-1 388341 L2511 2014 2333 1505785307955*2^1290000-1 388341 L3949 2014 2334 1505224997685*2^1290000-1 388341 L3892 2014 2335 1504235206155*2^1290000-1 388341 L3948 2014 2336 1503547863447*2^1290000-1 388341 L3571 2014 2337 1502472516237*2^1290000-1 388341 L3337 2014 2338 1502252324685*2^1290000-1 388341 L2601 2014 2339 1501168845297*2^1290000-1 388341 L3337 2014 2340 1498096118697*2^1290000-1 388341 L2035 2014 2341 1496911198755*2^1290000-1 388341 L3392 2014 2342 1496594115177*2^1290000-1 388341 L3892 2014 2343 1495976062317*2^1290000-1 388341 L3819 2014 2344 1495868912685*2^1290000-1 388341 L3946 2014 2345 1494027763035*2^1290000-1 388341 L3918 2014 2346 1493945608797*2^1290000-1 388341 L3616 2014 2347 1493318499585*2^1290000-1 388341 L3498 2014 2348 1492828328775*2^1290000-1 388341 L3900 2014 2349 1492380256425*2^1290000-1 388341 L3846 2014 2350 1492034760645*2^1290000-1 388341 L3175 2014 2351 1489266643527*2^1290000-1 388341 L3822 2014 2352 1489088842587*2^1290000-1 388341 L2511 2014 2353 1489044010155*2^1290000-1 388341 L3944 2014 2354 1489026307095*2^1290000-1 388341 L3347 2014 2355 1488356038827*2^1290000-1 388341 L3853 2014 2356 1487532012477*2^1290000-1 388341 L3560 2014 2357 1486501501047*2^1290000-1 388341 L2482 2014 2358 1485738472605*2^1290000-1 388341 L2511 2014 2359 1484890581387*2^1290000-1 388341 L2511 2014 2360 1481168443335*2^1290000-1 388341 L2420 2014 2361 1481134676175*2^1290000-1 388341 L3203 2014 2362 1478775484767*2^1290000-1 388341 L3892 2014 2363 1477392415737*2^1290000-1 388341 L3939 2014 2364 1476485496015*2^1290000-1 388341 L2601 2014 2365 1475652438615*2^1290000-1 388341 L2511 2014 2366 1475495377947*2^1290000-1 388341 L3936 2014 2367 1474142656005*2^1290000-1 388341 L2332 2014 2368 1474050373215*2^1290000-1 388341 L3892 2014 2369 1472987448777*2^1290000-1 388341 L3935 2014 2370 1471291796445*2^1290000-1 388341 L3934 2014 2371 1470617892555*2^1290000-1 388341 L3892 2014 2372 1470352927125*2^1290000-1 388341 L1970 2014 2373 1470021078045*2^1290000-1 388341 L2601 2014 2374 1469338495485*2^1290000-1 388341 L3932 2014 2375 1468915091145*2^1290000-1 388341 L3392 2014 2376 1468315881987*2^1290000-1 388341 L1637 2014 2377 1468120008087*2^1290000-1 388341 L3892 2014 2378 1464974816067*2^1290000-1 388341 L3897 2014 2379 1461761635365*2^1290000-1 388341 L3929 2014 2380 1461190776705*2^1290000-1 388341 L3921 2014 2381 1460244209235*2^1290000-1 388341 L3900 2014 2382 1460143275705*2^1290000-1 388341 L3918 2014 2383 1459885671237*2^1290000-1 388341 L3920 2014 2384 1456090247355*2^1290000-1 388341 L3916 2014 2385 1456081177815*2^1290000-1 388341 L3915 2014 2386 1453822547025*2^1290000-1 388341 L2601 2014 2387 1453600879887*2^1290000-1 388341 L3845 2014 2388 1451991096675*2^1290000-1 388341 L3911 2014 2389 1451513519337*2^1290000-1 388341 L3923 2014 2390 1449952523847*2^1290000-1 388341 L3829 2014 2391 1448426870415*2^1290000-1 388341 L3347 2014 2392 1448203934247*2^1290000-1 388341 L3399 2014 2393 1441771058835*2^1290000-1 388341 L596 2014 2394 1440989852487*2^1290000-1 388341 L2511 2014 2395 1440952105395*2^1290000-1 388341 L3892 2014 2396 1439031887907*2^1290000-1 388341 L3906 2014 2397 1437473499717*2^1290000-1 388341 L1219 2014 2398 1436127775425*2^1290000-1 388341 L2511 2014 2399 1434859874457*2^1290000-1 388341 L2420 2014 2400 1433115528927*2^1290000-1 388341 L2511 2014 2401 1431696046695*2^1290000-1 388341 L2482 2014 2402 1431518804235*2^1290000-1 388341 L3900 2014 2403 1428464678667*2^1290000-1 388341 L3899 2014 2404 1427511339987*2^1290000-1 388341 L2511 2014 2405 1426669774995*2^1290000-1 388341 L3897 2014 2406 1426186906305*2^1290000-1 388341 L3896 2014 2407 1426093209627*2^1290000-1 388341 L941 2014 2408 1421893090275*2^1290000-1 388341 L3892 2014 2409 1421878503867*2^1290000-1 388341 L3891 2014 2410 1421725576425*2^1290000-1 388341 L3892 2014 2411 1421499168735*2^1290000-1 388341 L3255 2014 2412 1419928827777*2^1290000-1 388341 L1844 2014 2413 1419319132467*2^1290000-1 388341 L941 2014 2414 1417285385787*2^1290000-1 388341 L3521 2014 2415 1416332753517*2^1290000-1 388341 L3521 2014 2416 1415413134375*2^1290000-1 388341 L3521 2014 2417 1411662710577*2^1290000-1 388341 L2420 2014 2418 1409846532195*2^1290000-1 388341 L2035 2014 2419 1409598816507*2^1290000-1 388341 L927 2014 2420 1408988763957*2^1290000-1 388341 L3521 2014 2421 1408809845655*2^1290000-1 388341 L3521 2014 2422 1407077511777*2^1290000-1 388341 L2483 2014 2423 1404965117967*2^1290000-1 388341 L3521 2014 2424 1404832223487*2^1290000-1 388341 L3884 2014 2425 1404721812237*2^1290000-1 388341 L3871 2014 2426 1401136563447*2^1290000-1 388341 L3883 2014 2427 1399057918755*2^1290000-1 388341 L3380 2014 2428 1398864471387*2^1290000-1 388341 L2511 2014 2429 1395777735165*2^1290000-1 388341 L2420 2014 2430 1395662544285*2^1290000-1 388341 L3880 2014 2431 1391710073385*2^1290000-1 388341 L927 2014 2432 1389464772285*2^1290000-1 388341 L927 2014 2433 1385351293947*2^1290000-1 388341 L2601 2014 2434 1385245767435*2^1290000-1 388341 L927 2014 2435 1383662943117*2^1290000-1 388341 L3331 2014 2436 1383507120525*2^1290000-1 388341 L3492 2014 2437 1383317261487*2^1290000-1 388341 L3560 2014 2438 1382779047405*2^1290000-1 388341 L2035 2014 2439 1380940810317*2^1290000-1 388341 L2035 2014 2440 1379867389827*2^1290000-1 388341 L2194 2014 2441 1378837619397*2^1290000-1 388341 L941 2014 2442 1378729467747*2^1290000-1 388341 L3706 2014 2443 1377455677887*2^1290000-1 388341 L1695 2014 2444 1376616320427*2^1290000-1 388341 L3874 2014 2445 1375598661885*2^1290000-1 388341 L2511 2014 2446 1373946265065*2^1290000-1 388341 L3401 2014 2447 1371818209947*2^1290000-1 388341 L3871 2014 2448 1369860760845*2^1290000-1 388341 L3674 2014 2449 1369618355625*2^1290000-1 388341 L1587 2014 2450 1367922865515*2^1290000-1 388341 L3648 2014 2451 1367192347365*2^1290000-1 388341 L596 2014 2452 1366913629347*2^1290000-1 388341 L927 2014 2453 1366349229177*2^1290000-1 388341 L927 2014 2454 1365815806875*2^1290000-1 388341 L2035 2014 2455 1365073633005*2^1290000-1 388341 L2511 2014 2456 1363505507457*2^1290000-1 388341 L3842 2014 2457 1360877788767*2^1290000-1 388341 L2035 2014 2458 1360658041545*2^1290000-1 388341 L3858 2014 2459 1358191901547*2^1290000-1 388341 L3401 2014 2460 1355638689207*2^1290000-1 388341 L3632 2014 2461 1354132252587*2^1290000-1 388341 L3651 2014 2462 1353798101535*2^1290000-1 388341 L3866 2014 2463 1352225947077*2^1290000-1 388341 L2482 2014 2464 1351756886235*2^1290000-1 388341 L2231 2014 2465 1351249131267*2^1290000-1 388341 L3203 2014 2466 1348862771637*2^1290000-1 388341 L1617 2014 2467 1348023164367*2^1290000-1 388341 L2420 2014 2468 1347832444647*2^1290000-1 388341 L3852 2014 2469 1347402800187*2^1290000-1 388341 L1219 2014 2470 1345609563237*2^1290000-1 388341 L3401 2014 2471 1345228454607*2^1290000-1 388341 L1591 2014 2472 1344573993915*2^1290000-1 388341 L2511 2014 2473 1344504836085*2^1290000-1 388341 L3203 2014 2474 1343970389835*2^1290000-1 388341 L3842 2014 2475 1341149175837*2^1290000-1 388341 L3853 2014 2476 1339926748275*2^1290000-1 388341 L3846 2014 2477 1338984890397*2^1290000-1 388341 L1591 2014 2478 1338815196645*2^1290000-1 388341 L3509 2014 2479 1337791586985*2^1290000-1 388341 L3602 2014 2480 1335620049585*2^1290000-1 388341 L3847 2014 2481 1334448977517*2^1290000-1 388341 L3845 2014 2482 1333578889155*2^1290000-1 388341 L3842 2014 2483 1332167545977*2^1290000-1 388341 L2775 2014 2484 1332117930057*2^1290000-1 388341 L3842 2014 2485 1330770635385*2^1290000-1 388341 L3841 2014 2486 1329147720105*2^1290000-1 388341 L3203 2014 2487 1328386927707*2^1290000-1 388341 L3380 2014 2488 1327992831165*2^1290000-1 388341 L3840 2014 2489 1327385659455*2^1290000-1 388341 L2204 2014 2490 1327000086615*2^1290000-1 388341 L3203 2014 2491 1326669382857*2^1290000-1 388341 L3347 2014 2492 1325445664317*2^1290000-1 388341 L3203 2014 2493 1323382008375*2^1290000-1 388341 L3651 2014 2494 1322849362917*2^1290000-1 388341 L3203 2014 2495 1321954316835*2^1290000-1 388341 L3819 2014 2496 1321870671555*2^1290000-1 388341 L3602 2014 2497 1321051328415*2^1290000-1 388341 L3829 2014 2498 1319971728075*2^1290000-1 388341 L3819 2014 2499 1319624021397*2^1290000-1 388341 L2420 2014 2500 1319118191655*2^1290000-1 388341 L3203 2014 2501 1318964157075*2^1290000-1 388341 L3203 2014 2502 1318230789027*2^1290000-1 388341 L3837 2014 2503 1315876192935*2^1290000-1 388341 L3651 2014 2504 1313036021295*2^1290000-1 388341 L2436 2014 2505 1312103117145*2^1290000-1 388341 L3832 2014 2506 1308450095997*2^1290000-1 388341 L3831 2014 2507 1306274034795*2^1290000-1 388341 L2483 2014 2508 1303865892147*2^1290000-1 388341 L1704 2014 2509 1302684995367*2^1290000-1 388341 L3429 2014 2510 1302000622347*2^1290000-1 388341 L3746 2014 2511 1301209790415*2^1290000-1 388341 L3829 2014 2512 1300612852437*2^1290000-1 388341 L3203 2014 2513 1300274732577*2^1290000-1 388341 L3546 2014 2514 1300011605655*2^1290000-1 388341 L3828 2014 2515 1299908352927*2^1290000-1 388341 L2511 2014 2516 1298786723517*2^1290000-1 388341 L3827 2014 2517 1298329417245*2^1290000-1 388341 L3203 2014 2518 1297147560975*2^1290000-1 388341 L3751 2014 2519 1296643077765*2^1290000-1 388341 L3826 2014 2520 1295373347037*2^1290000-1 388341 L2332 2014 2521 1294834358517*2^1290000-1 388341 L2483 2014 2522 1290928967757*2^1290000-1 388341 L1726 2014 2523 1289702588067*2^1290000-1 388341 L596 2014 2524 1289302463127*2^1290000-1 388341 L3823 2014 2525 1287279330867*2^1290000-1 388341 L3819 2014 2526 1287113570307*2^1290000-1 388341 L3817 2014 2527 1285928269227*2^1290000-1 388341 L3818 2014 2528 1285508416575*2^1290000-1 388341 L3392 2014 2529 1284054747855*2^1290000-1 388341 L2035 2014 2530 1282593788817*2^1290000-1 388341 L3815 2014 2531 1280455244367*2^1290000-1 388341 L3822 2014 2532 1279847418447*2^1290000-1 388341 L3634 2014 2533 1279182707955*2^1290000-1 388341 L1920 2014 2534 1278172259367*2^1290000-1 388341 L3634 2014 2535 1276841924787*2^1290000-1 388341 L3529 2014 2536 1276209076497*2^1290000-1 388341 L3634 2014 2537 1275321043815*2^1290000-1 388341 L3634 2014 2538 1274562951315*2^1290000-1 388341 L3811 2014 2539 1272951004125*2^1290000-1 388341 L2601 2014 2540 1272008729325*2^1290000-1 388341 L3203 2014 2541 1270893358275*2^1290000-1 388341 L3634 2014 2542 1267183049475*2^1290000-1 388341 L3809 2014 2543 1267113304917*2^1290000-1 388341 L1992 2014 2544 1264613044977*2^1290000-1 388341 L1920 2014 2545 1261161705555*2^1290000-1 388341 L3805 2014 2546 1260329950665*2^1290000-1 388341 L3765 2014 2547 1257984984417*2^1290000-1 388341 L2775 2014 2548 1257427381395*2^1290000-1 388341 L3546 2014 2549 1253806275477*2^1290000-1 388341 L3425 2014 2550 1252879215705*2^1290000-1 388341 L3799 2014 2551 1252530756207*2^1290000-1 388341 L3804 2014 2552 1252200504837*2^1290000-1 388341 L3821 2014 2553 1251973294497*2^1290000-1 388341 L3495 2014 2554 1250477575587*2^1290000-1 388341 L3741 2014 2555 1250254213437*2^1290000-1 388341 L3801 2014 2556 1249155607425*2^1290000-1 388341 L3653 2014 2557 1247560502235*2^1290000-1 388341 L2679 2014 2558 1247252803617*2^1290000-1 388341 L2577 2014 2559 1243685827965*2^1290000-1 388341 L324 2014 2560 1242992170605*2^1290000-1 388341 L3792 2014 2561 1240271690355*2^1290000-1 388341 L1921 2014 2562 1238483555445*2^1290000-1 388341 L1992 2014 2563 1234697178795*2^1290000-1 388341 L3716 2014 2564 1231771061367*2^1290000-1 388341 L3788 2014 2565 1230976538025*2^1290000-1 388341 L2512 2014 2566 1228390630395*2^1290000-1 388341 L927 2014 2567 1226955524727*2^1290000-1 388341 L2527 2014 2568 1226041085967*2^1290000-1 388341 L3602 2014 2569 1221770269905*2^1290000-1 388341 L3331 2014 2570 1220468887995*2^1290000-1 388341 L3741 2014 2571 1219614946905*2^1290000-1 388341 L3399 2014 2572 1219444105245*2^1290000-1 388341 L3782 2014 2573 1219095316437*2^1290000-1 388341 L3651 2014 2574 1218589180245*2^1290000-1 388341 L3765 2014 2575 1215345034545*2^1290000-1 388341 L3203 2014 2576 1214578835307*2^1290000-1 388341 L3778 2014 2577 1211682757827*2^1290000-1 388341 L3392 2014 2578 1211396534955*2^1290000-1 388341 L3776 2014 2579 1209387608907*2^1290000-1 388341 L2511 2014 2580 1207909103445*2^1290000-1 388341 L3795 2014 2581 1207310191677*2^1290000-1 388341 L3779 2014 2582 1205769875775*2^1290000-1 388341 L2204 2014 2583 1205405161515*2^1290000-1 388341 L3777 2014 2584 1205045332515*2^1290000-1 388341 L3774 2014 2585 1204508462547*2^1290000-1 388341 L3203 2014 2586 1204222377405*2^1290000-1 388341 L3394 2014 2587 1202862502935*2^1290000-1 388341 L1992 2014 2588 1201479504615*2^1290000-1 388341 L3771 2014 2589 1201123803927*2^1290000-1 388341 L3741 2014 2590 1199891135835*2^1290000-1 388341 L3380 2014 2591 1199154561297*2^1290000-1 388341 L2511 2014 2592 1198376992095*2^1290000-1 388341 L2204 2014 2593 1194137107347*2^1290000-1 388341 L3203 2014 2594 1193342531157*2^1290000-1 388341 L3769 2014 2595 1191694340655*2^1290000-1 388341 L3399 2014 2596 1191403796355*2^1290000-1 388341 L3498 2014 2597 1188581180295*2^1290000-1 388341 L3765 2014 2598 1187886713667*2^1290000-1 388341 L3255 2014 2599 1187340723915*2^1290000-1 388341 L3766 2014 2600 1187213925135*2^1290000-1 388341 L2511 2014 2601 1184707357557*2^1290000-1 388341 L3747 2014 2602 1181830688397*2^1290000-1 388341 L3747 2014 2603 1181240422227*2^1290000-1 388341 L3554 2014 2604 1179369704817*2^1290000-1 388341 L3761 2014 2605 1179138203787*2^1290000-1 388341 L2511 2014 2606 1178829471867*2^1290000-1 388341 L3747 2014 2607 1178343698397*2^1290000-1 388341 L2204 2014 2608 1177700741217*2^1290000-1 388341 L3747 2014 2609 1177162709415*2^1290000-1 388341 L2472 2014 2610 1172406009045*2^1290000-1 388341 L957 2014 2611 1168940989755*2^1290000-1 388341 L3741 2014 2612 1168934752797*2^1290000-1 388341 L2679 2013 2613 1168174212795*2^1290000-1 388341 L3747 2013 2614 1167966409197*2^1290000-1 388341 L3747 2014 2615 1164710569407*2^1290000-1 388341 L3590 2013 2616 1161207962847*2^1290000-1 388341 L596 2014 2617 1160119347285*2^1290000-1 388341 L3546 2013 2618 1160013767895*2^1290000-1 388341 L3756 2013 2619 1159641700815*2^1290000-1 388341 L2512 2014 2620 1159170525795*2^1290000-1 388341 L3747 2013 2621 1158896696235*2^1290000-1 388341 L3754 2013 2622 1158628172907*2^1290000-1 388341 L1219 2013 2623 1158596020965*2^1290000-1 388341 L3751 2013 2624 1157625866397*2^1290000-1 388341 L3546 2013 2625 1154012056437*2^1290000-1 388341 L375 2013 2626 1153704503637*2^1290000-1 388341 L2511 2013 2627 1152097577535*2^1290000-1 388341 L3746 2013 2628 1151163876795*2^1290000-1 388341 L3634 2013 2629 1147793253495*2^1290000-1 388341 L3627 2013 2630 1147684911975*2^1290000-1 388341 L3741 2013 2631 1147583305827*2^1290000-1 388341 L992 2014 2632 1147042745907*2^1290000-1 388341 L2679 2013 2633 1146194696397*2^1290000-1 388341 L2679 2013 2634 1146149349075*2^1290000-1 388341 L3745 2013 2635 1144325099487*2^1290000-1 388341 L3740 2013 2636 1143933001785*2^1290000-1 388341 L3394 2013 2637 1141100366157*2^1290000-1 388341 L3651 2013 2638 1140774031707*2^1290000-1 388341 L1992 2013 2639 1138334454075*2^1290000-1 388341 L3734 2013 2640 1136399992737*2^1290000-1 388341 L2152 2013 2641 1135946642187*2^1290000-1 388341 L2264 2013 2642 1134914346267*2^1290000-1 388341 L3429 2013 2643 1130826639915*2^1290000-1 388341 L2693 2013 2644 1128710732277*2^1290000-1 388341 L3730 2013 2645 1126976603727*2^1290000-1 388341 L3718 2013 2646 1126664017437*2^1290000-1 388341 L3627 2013 2647 1126409632467*2^1290000-1 388341 L955 2013 2648 1126046180985*2^1290000-1 388341 L1126 2013 2649 1125156360627*2^1290000-1 388341 L3741 2013 2650 1124268113925*2^1290000-1 388341 L2511 2013 2651 1123500185145*2^1290000-1 388341 L3498 2013 2652 1122965314515*2^1290000-1 388341 L3729 2013 2653 1122878083917*2^1290000-1 388341 L927 2013 2654 1120950876675*2^1290000-1 388341 L3255 2013 2655 1119992865087*2^1290000-1 388341 L3602 2013 2656 1118912885937*2^1290000-1 388341 L2511 2013 2657 1118285427087*2^1290000-1 388341 L3627 2013 2658 1118092122045*2^1290000-1 388341 L3602 2013 2659 1117413349635*2^1290000-1 388341 L3723 2013 2660 1114412040885*2^1290000-1 388341 L3203 2013 2661 1114195470327*2^1290000-1 388341 L3701 2013 2662 1110498744105*2^1290000-1 388341 L3401 2013 2663 1109961177255*2^1290000-1 388341 L3718 2013 2664 1109362875525*2^1290000-1 388341 L3722 2013 2665 1109072939565*2^1290000-1 388341 L3634 2013 2666 1107570189687*2^1290000-1 388341 L1695 2013 2667 1107365779047*2^1290000-1 388341 L3203 2013 2668 1106798537997*2^1290000-1 388341 L3321 2013 2669 1106484548097*2^1290000-1 388341 L927 2013 2670 1106442719475*2^1290000-1 388341 L3701 2013 2671 1105559302767*2^1290000-1 388341 L3203 2013 2672 1104368190285*2^1290000-1 388341 L1992 2013 2673 1103967075645*2^1290000-1 388341 L927 2013 2674 1101969629787*2^1290000-1 388341 L1391 2013 2675 1094273062815*2^1290000-1 388341 L3715 2013 2676 1091894647917*2^1290000-1 388341 L1992 2013 2677 1087307860917*2^1290000-1 388341 L927 2013 2678 1086565951947*2^1290000-1 388341 L2511 2013 2679 1086338423667*2^1290000-1 388341 L3203 2013 2680 1084863892677*2^1290000-1 388341 L3488 2013 2681 1083229872447*2^1290000-1 388341 L927 2013 2682 1082479039185*2^1290000-1 388341 L3816 2014 2683 1081985488215*2^1290000-1 388341 L3203 2013 2684 1081543957035*2^1290000-1 388341 L3710 2013 2685 1081059875535*2^1290000-1 388341 L2512 2013 2686 1080955629525*2^1290000-1 388341 L3708 2013 2687 1079272341987*2^1290000-1 388341 L3203 2013 2688 1077210057345*2^1290000-1 388341 L1994 2013 2689 1074205073835*2^1290000-1 388341 L2760 2013 2690 1073836801305*2^1290000-1 388341 L3703 2013 2691 1073394950325*2^1290000-1 388341 L3203 2013 2692 1072431944085*2^1290000-1 388341 L1617 2013 2693 1070191827735*2^1290000-1 388341 L3704 2013 2694 1069254072507*2^1290000-1 388341 L3706 2013 2695 1067950803825*2^1290000-1 388341 L927 2013 2696 1063778062707*2^1290000-1 388341 L3701 2013 2697 1061613055785*2^1290000-1 388341 L986 2013 2698 1060942890975*2^1290000-1 388341 L3401 2013 2699 1060665898407*2^1290000-1 388341 L3380 2013 2700 1059800750325*2^1290000-1 388341 L3316 2013 2701 1059127077297*2^1290000-1 388341 L3697 2013 2702 1056445957257*2^1290000-1 388341 L3697 2013 2703 1055721308325*2^1290000-1 388341 L3270 2013 2704 1054899866865*2^1290000-1 388341 L927 2013 2705 1053802969485*2^1290000-1 388341 L986 2013 2706 1053617800917*2^1290000-1 388341 L3694 2013 2707 1050685023897*2^1290000-1 388341 L927 2013 2708 1047660722997*2^1290000-1 388341 L3574 2013 2709 1046786302707*2^1290000-1 388341 L3574 2013 2710 1045698318045*2^1290000-1 388341 L2482 2013 2711 1041951957975*2^1290000-1 388341 L3689 2013 2712 1038901936635*2^1290000-1 388341 L3203 2013 2713 1037485910937*2^1290000-1 388341 L3692 2013 2714 1037337229197*2^1290000-1 388341 L3651 2013 2715 1033980522237*2^1290000-1 388341 L3690 2013 2716 1031789849127*2^1290000-1 388341 L2760 2013 2717 1028108594385*2^1290000-1 388341 L3332 2013 2718 1025973168267*2^1290000-1 388341 L3683 2013 2719 1025297434707*2^1290000-1 388341 L2393 2013 2720 1025262476355*2^1290000-1 388341 L927 2013 2721 1024046665827*2^1290000-1 388341 L3680 2013 2722 1022500112697*2^1290000-1 388341 L927 2013 2723 1022094931275*2^1290000-1 388341 L3681 2013 2724 1022077360785*2^1290000-1 388341 L3716 2013 2725 1020695345337*2^1290000-1 388341 L2768 2013 2726 1019771520357*2^1290000-1 388341 L3677 2013 2727 1019649424647*2^1290000-1 388341 L3687 2013 2728 1019428935327*2^1290000-1 388341 L3684 2013 2729 1014340708377*2^1290000-1 388341 L3210 2013 2730 1013852682705*2^1290000-1 388341 L927 2013 2731 1013801112795*2^1290000-1 388341 L2165 2013 2732 1013403119445*2^1290000-1 388341 L2340 2013 2733 1013078775735*2^1290000-1 388341 L3638 2013 2734 1009250298285*2^1290000-1 388341 L3651 2013 2735 1006208359095*2^1290000-1 388341 L3651 2013 2736 1006152210945*2^1290000-1 388341 L3674 2013 2737 1005777719697*2^1290000-1 388341 L3517 2013 2738 1005346134765*2^1290000-1 388341 L3203 2013 2739 1004839330467*2^1290000-1 388341 L1695 2013 2740 999621694437*2^1290000-1 388341 L2435 2013 2741 998381855187*2^1290000-1 388341 L3530 2013 2742 994866622857*2^1290000-1 388341 L3321 2013 2743 993033944775*2^1290000-1 388341 L3669 2013 2744 992804062035*2^1290000-1 388341 L3550 2013 2745 991306658235*2^1290000-1 388341 L2774 2013 2746 988443269355*2^1290000-1 388341 L3550 2013 2747 987951536355*2^1290000-1 388341 L3550 2013 2748 987947546187*2^1290000-1 388341 L3550 2013 2749 986960139027*2^1290000-1 388341 L3550 2013 2750 986646492837*2^1290000-1 388341 L3550 2013 2751 985377618255*2^1290000-1 388341 L2165 2013 2752 984971842125*2^1290000-1 388341 L3550 2013 2753 984815265315*2^1290000-1 388341 L3550 2013 2754 984502095915*2^1290000-1 388341 L3550 2013 2755 984020087235*2^1290000-1 388341 L3667 2013 2756 982862680875*2^1290000-1 388341 L2760 2013 2757 981854461437*2^1290000-1 388341 L3661 2013 2758 980419317267*2^1290000-1 388341 L2601 2013 2759 979631785767*2^1290000-1 388341 L3203 2013 2760 972354899637*2^1290000-1 388341 L3203 2013 2761 971800484457*2^1290000-1 388341 L3550 2013 2762 968312379687*2^1290000-1 388341 L3550 2013 2763 966671575047*2^1290000-1 388341 L3550 2013 2764 966517373307*2^1290000-1 388341 L3550 2013 2765 964565245527*2^1290000-1 388341 L3655 2013 2766 963720102345*2^1290000-1 388341 L3550 2013 2767 960513995355*2^1290000-1 388341 L3530 2013 2768 957710754135*2^1290000-1 388341 L3550 2013 2769 957079417485*2^1290000-1 388341 L3550 2013 2770 955894391307*2^1290000-1 388341 L3550 2013 2771 954515883207*2^1290000-1 388341 L3550 2013 2772 952957381677*2^1290000-1 388341 L3550 2013 2773 951143741385*2^1290000-1 388341 L3550 2013 2774 950702910927*2^1290000-1 388341 L3550 2013 2775 950041665225*2^1290000-1 388341 L3550 2013 2776 949825612395*2^1290000-1 388341 L2482 2013 2777 948009634647*2^1290000-1 388341 L3203 2013 2778 947544284685*2^1290000-1 388341 L3602 2013 2779 947172395097*2^1290000-1 388341 L3550 2013 2780 946728962067*2^1290000-1 388341 L3550 2013 2781 945935699355*2^1290000-1 388341 L927 2013 2782 944273417817*2^1290000-1 388341 L3550 2013 2783 941940401307*2^1290000-1 388341 L3550 2013 2784 941332557825*2^1290000-1 388341 L3550 2013 2785 941193209817*2^1290000-1 388341 L3550 2013 2786 940558054077*2^1290000-1 388341 L3550 2013 2787 939782353167*2^1290000-1 388341 L3550 2013 2788 935256026637*2^1290000-1 388341 L3550 2013 2789 934848261657*2^1290000-1 388341 L3478 2013 2790 933378344775*2^1290000-1 388341 L927 2013 2791 933069639315*2^1290000-1 388341 L3550 2013 2792 930685545387*2^1290000-1 388341 L3387 2013 2793 929292816195*2^1290000-1 388341 L3652 2013 2794 928112296947*2^1290000-1 388341 L3203 2013 2795 927438140865*2^1290000-1 388341 L3550 2013 2796 926915691117*2^1290000-1 388341 L3321 2013 2797 923249438895*2^1290000-1 388341 L3550 2013 2798 922287228075*2^1290000-1 388341 L1704 2013 2799 920524257915*2^1290000-1 388341 L3550 2013 2800 920470469457*2^1290000-1 388341 L3654 2013 2801 920157814677*2^1290000-1 388341 L3550 2013 2802 919969693965*2^1290000-1 388341 L3651 2013 2803 919571680335*2^1290000-1 388341 L3550 2013 2804 918750404775*2^1290000-1 388341 L3550 2013 2805 918102769257*2^1290000-1 388341 L3550 2013 2806 915076577607*2^1290000-1 388341 L2511 2013 2807 914750194545*2^1290000-1 388341 L3521 2013 2808 914170194117*2^1290000-1 388341 L3653 2013 2809 912572197665*2^1290000-1 388341 L927 2013 2810 912420115455*2^1290000-1 388341 L3521 2013 2811 908954560587*2^1290000-1 388341 L1683 2013 2812 908296607487*2^1290000-1 388341 L2287 2013 2813 907717371825*2^1290000-1 388341 L927 2013 2814 903461791617*2^1290000-1 388341 L927 2013 2815 903420729027*2^1290000-1 388341 L3647 2013 2816 899679370917*2^1290000-1 388341 L3648 2013 2817 899202841647*2^1290000-1 388341 L3203 2013 2818 898167691347*2^1290000-1 388341 L3643 2013 2819 896401769895*2^1290000-1 388341 L3627 2013 2820 894637861395*2^1290000-1 388341 L1617 2013 2821 893189310477*2^1290000-1 388341 L3606 2013 2822 888605121675*2^1290000-1 388341 L927 2013 2823 888393312837*2^1290000-1 388341 L2457 2013 2824 888301472835*2^1290000-1 388341 L3637 2013 2825 887224672425*2^1290000-1 388341 L3642 2013 2826 885721881807*2^1290000-1 388341 L3644 2013 2827 885236623455*2^1290000-1 388341 L1844 2013 2828 883666066155*2^1290000-1 388341 L3634 2013 2829 883240798125*2^1290000-1 388341 L3636 2013 2830 882585723087*2^1290000-1 388341 L3639 2013 2831 881424702405*2^1290000-1 388341 L927 2013 2832 880493050785*2^1290000-1 388341 L3635 2013 2833 880482001467*2^1290000-1 388341 L2482 2013 2834 878639678847*2^1290000-1 388341 L3615 2013 2835 878374978005*2^1290000-1 388341 L3638 2013 2836 878050315047*2^1290000-1 388341 L1866 2013 2837 878000438817*2^1290000-1 388341 L3599 2013 2838 876343168155*2^1290000-1 388341 L3203 2013 2839 876300336177*2^1290000-1 388341 L3632 2013 2840 876222091017*2^1290000-1 388341 L2601 2013 2841 875738417277*2^1290000-1 388341 L3633 2013 2842 875664474447*2^1290000-1 388341 L927 2013 2843 874292185347*2^1290000-1 388341 L3628 2013 2844 871849312617*2^1290000-1 388341 L3631 2013 2845 870157826865*2^1290000-1 388341 L3390 2013 2846 869864816007*2^1290000-1 388341 L2511 2013 2847 869647892337*2^1290000-1 388341 L3627 2013 2848 867437170857*2^1290000-1 388341 L3627 2013 2849 864229553085*2^1290000-1 388341 L3623 2013 2850 860584652517*2^1290000-1 388341 L3626 2013 2851 859754363967*2^1290000-1 388341 L927 2013 2852 859539105297*2^1290000-1 388341 L927 2013 2853 858477576297*2^1290000-1 388341 L1866 2013 2854 856533636675*2^1290000-1 388341 L3621 2013 2855 855672648075*2^1290000-1 388341 L3618 2013 2856 855320190345*2^1290000-1 388341 L1633 2013 2857 854454107955*2^1290000-1 388341 L3615 2013 2858 854014423605*2^1290000-1 388341 L986 2013 2859 850825168695*2^1290000-1 388341 L3622 2013 2860 850314091107*2^1290000-1 388341 L3613 2013 2861 850039468245*2^1290000-1 388341 L3498 2013 2862 848437471227*2^1290000-1 388341 L927 2013 2863 846919408695*2^1290000-1 388341 L2360 2013 2864 845860149645*2^1290000-1 388341 L2457 2013 2865 845299920495*2^1290000-1 388341 L3392 2013 2866 843928486905*2^1290000-1 388341 L2197 2013 2867 843016476507*2^1290000-1 388341 L3371 2013 2868 839085453477*2^1290000-1 388341 L3608 2013 2869 836377098945*2^1290000-1 388341 L3606 2013 2870 834341653785*2^1290000-1 388341 L2320 2013 2871 833507909325*2^1290000-1 388341 L2511 2013 2872 832280598765*2^1290000-1 388341 L1992 2013 2873 831542710605*2^1290000-1 388341 L3203 2013 2874 830276810295*2^1290000-1 388341 L3603 2013 2875 829614956877*2^1290000-1 388341 L3611 2013 2876 829375600497*2^1290000-1 388341 L3478 2013 2877 829002832647*2^1290000-1 388341 L3605 2013 2878 828492868635*2^1290000-1 388341 L3321 2013 2879 827973164865*2^1290000-1 388341 L3478 2013 2880 826705845105*2^1290000-1 388341 L3600 2013 2881 823706004555*2^1290000-1 388341 L341 2013 2882 823438630947*2^1290000-1 388341 L3498 2013 2883 822973127427*2^1290000-1 388341 L3596 2013 2884 822849486585*2^1290000-1 388341 L2405 2013 2885 821593351845*2^1290000-1 388341 L3602 2013 2886 820760612787*2^1290000-1 388341 L3599 2013 2887 820723060677*2^1290000-1 388341 L2435 2013 2888 820135820457*2^1290000-1 388341 L3346 2013 2889 820102913775*2^1290000-1 388341 L3236 2013 2890 819177521697*2^1290000-1 388341 L2472 2013 2891 814817666817*2^1290000-1 388341 L3590 2013 2892 813989439417*2^1290000-1 388341 L3550 2013 2893 809413600047*2^1290000-1 388341 L3331 2013 2894 809007544455*2^1290000-1 388341 L3550 2013 2895 808744158105*2^1290000-1 388341 L3550 2013 2896 806881982265*2^1290000-1 388341 L992 2013 2897 804501663177*2^1290000-1 388341 L3550 2013 2898 804083950257*2^1290000-1 388341 L3550 2013 2899 801733068405*2^1290000-1 388341 L3550 2013 2900 800717968827*2^1290000-1 388341 L2165 2013 2901 799143902895*2^1290000-1 388341 L3591 2013 2902 798493609665*2^1290000-1 388341 L3550 2013 2903 797735864247*2^1290000-1 388341 L3550 2013 2904 795154352505*2^1290000-1 388341 L3550 2013 2905 794973711777*2^1290000-1 388341 L3550 2013 2906 791655829167*2^1290000-1 388341 L3550 2013 2907 790668022347*2^1290000-1 388341 L3550 2013 2908 788897634525*2^1290000-1 388341 L3550 2013 2909 786484820235*2^1290000-1 388341 L3550 2013 2910 785807061627*2^1290000-1 388341 L3550 2013 2911 784683127455*2^1290000-1 388341 L3550 2013 2912 784173558327*2^1290000-1 388341 L3550 2013 2913 781491518145*2^1290000-1 388341 L3550 2013 2914 780988107765*2^1290000-1 388341 L3550 2013 2915 780094698315*2^1290000-1 388341 L3550 2013 2916 778889945715*2^1290000-1 388341 L3419 2013 2917 778227467685*2^1290000-1 388341 L3550 2013 2918 778202572035*2^1290000-1 388341 L3550 2013 2919 777217454097*2^1290000-1 388341 L3550 2013 2920 772880419995*2^1290000-1 388341 L3550 2013 2921 772763684355*2^1290000-1 388341 L3550 2013 2922 772172802735*2^1290000-1 388341 L3550 2013 2923 770960461995*2^1290000-1 388341 L3550 2013 2924 770527213395*2^1290000-1 388341 L3550 2013 2925 769939190715*2^1290000-1 388341 L3550 2013 2926 769842431967*2^1290000-1 388341 L3550 2013 2927 769515689085*2^1290000-1 388341 L3550 2013 2928 768825179685*2^1290000-1 388341 L3550 2013 2929 768493578435*2^1290000-1 388341 L3550 2013 2930 767979630735*2^1290000-1 388341 L3550 2013 2931 767672240547*2^1290000-1 388341 L3550 2013 2932 767444293257*2^1290000-1 388341 L3550 2013 2933 767104512405*2^1290000-1 388341 L3550 2013 2934 763549262187*2^1290000-1 388341 L3550 2013 2935 761971146825*2^1290000-1 388341 L3582 2013 2936 761182534455*2^1290000-1 388341 L3550 2013 2937 760598148585*2^1290000-1 388341 L2423 2013 2938 760250128137*2^1290000-1 388341 L3550 2013 2939 757605926997*2^1290000-1 388341 L3550 2013 2940 757145028447*2^1290000-1 388341 L3550 2013 2941 756859648977*2^1290000-1 388341 L3550 2013 2942 755730605115*2^1290000-1 388341 L3550 2013 2943 755347333107*2^1290000-1 388341 L3550 2013 2944 754113209127*2^1290000-1 388341 L3550 2013 2945 753752769915*2^1290000-1 388341 L3550 2013 2946 751305641595*2^1290000-1 388341 L3550 2013 2947 750972083325*2^1290000-1 388341 L3550 2013 2948 749019938637*2^1290000-1 388341 L3550 2013 2949 747688413507*2^1290000-1 388341 L1563 2013 2950 747579165837*2^1290000-1 388341 L3550 2013 2951 747242198565*2^1290000-1 388341 L992 2013 2952 744892886157*2^1290000-1 388341 L3550 2013 2953 744867929577*2^1290000-1 388341 L3550 2013 2954 743879220357*2^1290000-1 388341 L3560 2013 2955 743155848477*2^1290000-1 388341 L3550 2013 2956 742816460787*2^1290000-1 388341 L3550 2013 2957 740405839815*2^1290000-1 388341 L3550 2013 2958 740367863007*2^1290000-1 388341 L3550 2013 2959 739402959927*2^1290000-1 388341 L3550 2013 2960 739153581015*2^1290000-1 388341 L3550 2013 2961 738783951435*2^1290000-1 388341 L3550 2013 2962 738642222477*2^1290000-1 388341 L3578 2013 2963 737104389465*2^1290000-1 388341 L3550 2013 2964 736757583555*2^1290000-1 388341 L3550 2013 2965 736664234577*2^1290000-1 388341 L3550 2013 2966 734689728285*2^1290000-1 388341 L3550 2013 2967 733633674867*2^1290000-1 388341 L3550 2013 2968 731362328595*2^1290000-1 388341 L3550 2013 2969 728372175645*2^1290000-1 388341 L3550 2013 2970 727444781565*2^1290000-1 388341 L3550 2013 2971 725175563385*2^1290000-1 388341 L2197 2013 2972 724880607687*2^1290000-1 388341 L3550 2013 2973 721744120797*2^1290000-1 388341 L3550 2013 2974 721191764835*2^1290000-1 388341 L3550 2013 2975 720576978537*2^1290000-1 388341 L3550 2013 2976 718171996545*2^1290000-1 388341 L3550 2013 2977 717870532227*2^1290000-1 388341 L975 2013 2978 717097820985*2^1290000-1 388341 L3550 2013 2979 716072968635*2^1290000-1 388341 L2679 2013 2980 715969980645*2^1290000-1 388341 L3550 2013 2981 715814868855*2^1290000-1 388341 L3550 2013 2982 712235534535*2^1290000-1 388341 L3550 2013 2983 711068481357*2^1290000-1 388341 L3550 2013 2984 710303309415*2^1290000-1 388341 L3550 2013 2985 708551718957*2^1290000-1 388341 L3550 2013 2986 708229975995*2^1290000-1 388341 L3550 2013 2987 707898299127*2^1290000-1 388341 L3550 2013 2988 705030433935*2^1290000-1 388341 L3550 2013 2989 702242617065*2^1290000-1 388341 L3574 2013 2990 701050199157*2^1290000-1 388341 L3573 2013 2991 701039249685*2^1290000-1 388341 L3550 2013 2992 699938225457*2^1290000-1 388341 L3550 2013 2993 697876484805*2^1290000-1 388341 L3550 2013 2994 697182317715*2^1290000-1 388341 L3550 2013 2995 695999873697*2^1290000-1 388341 L3571 2013 2996 695079143715*2^1290000-1 388341 L2197 2013 2997 689434185345*2^1290000-1 388341 L1566 2013 2998 687716271357*2^1290000-1 388341 L3507 2013 2999 687188015475*2^1290000-1 388341 L3429 2013 3000 686937123987*2^1290000-1 388341 L3563 2013 3001 686768387895*2^1290000-1 388341 L3572 2013 3002 685697549955*2^1290000-1 388341 L2601 2013 3003 685064645907*2^1290000-1 388341 L2693 2013 3004 684872462655*2^1290000-1 388341 L3568 2013 3005 684364639185*2^1290000-1 388341 L3550 2013 3006 684364441467*2^1290000-1 388341 L3550 2013 3007 684231201267*2^1290000-1 388341 L3550 2013 3008 684168518577*2^1290000-1 388341 L3550 2013 3009 684083929545*2^1290000-1 388341 L3550 2013 3010 683596821747*2^1290000-1 388341 L3550 2013 3011 682481695047*2^1290000-1 388341 L3550 2013 3012 680633369295*2^1290000-1 388341 L3550 2013 3013 680285208447*2^1290000-1 388341 L3550 2013 3014 679946820315*2^1290000-1 388341 L3550 2013 3015 679650559887*2^1290000-1 388341 L3550 2013 3016 678718462977*2^1290000-1 388341 L3550 2013 3017 677434157547*2^1290000-1 388341 L3550 2013 3018 674896414575*2^1290000-1 388341 L3550 2013 3019 674002958127*2^1290000-1 388341 L3550 2013 3020 673205688837*2^1290000-1 388341 L3550 2013 3021 672766437735*2^1290000-1 388341 L3331 2013 3022 672313481805*2^1290000-1 388341 L3557 2013 3023 670260024945*2^1290000-1 388341 L3550 2013 3024 669404918385*2^1290000-1 388341 L3560 2013 3025 665713293885*2^1290000-1 388341 L3550 2013 3026 665186324085*2^1290000-1 388341 L3554 2013 3027 661560458517*2^1290000-1 388341 L3321 2013 3028 660633631875*2^1290000-1 388341 L3550 2013 3029 659585676015*2^1290000-1 388341 L2450 2013 3030 657516716925*2^1290000-1 388341 L3546 2013 3031 657488545107*2^1290000-1 388341 L3556 2013 3032 655030890087*2^1290000-1 388341 L2354 2013 3033 654470821485*2^1290000-1 388341 L3542 2013 3034 653826115005*2^1290000-1 388341 L3203 2013 3035 652631778027*2^1290000-1 388341 L3541 2013 3036 650715578835*2^1290000-1 388341 L927 2013 3037 650395850925*2^1290000-1 388341 L3535 2013 3038 649723807287*2^1290000-1 388341 L3537 2013 3039 645403665447*2^1290000-1 388341 L927 2013 3040 645183989655*2^1290000-1 388341 L927 2013 3041 644332254837*2^1290000-1 388341 L2511 2013 3042 643982821797*2^1290000-1 388341 L3535 2013 3043 642136678995*2^1290000-1 388341 L1920 2013 3044 640262956095*2^1290000-1 388341 L927 2013 3045 640032469305*2^1290000-1 388341 L3371 2013 3046 639442195857*2^1290000-1 388341 L3536 2013 3047 639322276155*2^1290000-1 388341 L2511 2013 3048 638280657105*2^1290000-1 388341 L1697 2013 3049 637622451735*2^1290000-1 388341 L927 2013 3050 637078553835*2^1290000-1 388341 L1430 2013 3051 635051817825*2^1290000-1 388341 L3529 2013 3052 634913128047*2^1290000-1 388341 L3520 2013 3053 634907213127*2^1290000-1 388341 L3530 2013 3054 631738082055*2^1290000-1 388341 L3525 2013 3055 631368139017*2^1290000-1 388341 L2197 2013 3056 629621073837*2^1290000-1 388341 L1319 2013 3057 628140225225*2^1290000-1 388341 L1001 2013 3058 622777788717*2^1290000-1 388341 L927 2013 3059 622764665967*2^1290000-1 388341 L2601 2013 3060 622171046565*2^1290000-1 388341 L3498 2013 3061 621652716597*2^1290000-1 388341 L3522 2013 3062 620799233145*2^1290000-1 388341 L3203 2013 3063 620779654995*2^1290000-1 388341 L1953 2013 3064 620441333295*2^1290000-1 388341 L2133 2013 3065 619944319965*2^1290000-1 388341 L3534 2013 3066 619106264367*2^1290000-1 388341 L927 2013 3067 618824753445*2^1290000-1 388341 L1566 2013 3068 617795053785*2^1290000-1 388341 L2478 2013 3069 612917120097*2^1290000-1 388341 L3521 2013 3070 612861781107*2^1290000-1 388341 L2595 2013 3071 612563306175*2^1290000-1 388341 L2345 2013 3072 611251352847*2^1290000-1 388341 L927 2013 3073 608467591587*2^1290000-1 388341 L927 2013 3074 605578149447*2^1290000-1 388341 L3558 2013 3075 605500978227*2^1290000-1 388341 L3520 2013 3076 605446960137*2^1290000-1 388341 L3242 2013 3077 602667338535*2^1290000-1 388341 L3517 2013 3078 599798757567*2^1290000-1 388341 L3515 2013 3079 599415204327*2^1290000-1 388341 L1319 2013 3080 598503731577*2^1290000-1 388341 L1319 2013 3081 598076872617*2^1290000-1 388341 L2457 2013 3082 595053598977*2^1290000-1 388341 L3426 2013 3083 594635112225*2^1290000-1 388341 L2457 2013 3084 594411078345*2^1290000-1 388341 L1319 2013 3085 593727284685*2^1290000-1 388341 L2438 2013 3086 591966620325*2^1290000-1 388341 L3503 2013 3087 591088601337*2^1290000-1 388341 L3394 2013 3088 590291881065*2^1290000-1 388341 L1319 2013 3089 590278821135*2^1290000-1 388341 L1319 2013 3090 586478944725*2^1290000-1 388341 L3347 2013 3091 586267773705*2^1290000-1 388341 L1319 2013 3092 585416789085*2^1290000-1 388341 L3509 2013 3093 584315200737*2^1290000-1 388341 L596 2013 3094 583990308807*2^1290000-1 388341 L3203 2013 3095 583861939677*2^1290000-1 388341 L2511 2013 3096 583634035647*2^1290000-1 388341 L2250 2013 3097 582960045915*2^1290000-1 388341 L3429 2013 3098 580814815467*2^1290000-1 388341 L3203 2013 3099 580137887397*2^1290000-1 388341 L1319 2013 3100 580058432985*2^1290000-1 388341 L3274 2013 3101 578882614455*2^1290000-1 388341 L3506 2013 3102 578680361367*2^1290000-1 388341 L1319 2013 3103 577630659525*2^1290000-1 388341 L3274 2013 3104 576462034977*2^1290000-1 388341 L1319 2013 3105 574759579665*2^1290000-1 388341 L3203 2013 3106 572912625477*2^1290000-1 388341 L3274 2013 3107 572811590307*2^1290000-1 388341 L1617 2013 3108 572005945905*2^1290000-1 388341 L2511 2013 3109 571922904705*2^1290000-1 388341 L3287 2013 3110 571510228245*2^1290000-1 388341 L2511 2013 3111 571015401057*2^1290000-1 388341 L2496 2013 3112 570494531505*2^1290000-1 388341 L596 2013 3113 569989094517*2^1290000-1 388341 L3496 2013 3114 569647051785*2^1290000-1 388341 L3496 2013 3115 569544800037*2^1290000-1 388341 L3496 2013 3116 569433388617*2^1290000-1 388341 L3287 2013 3117 568371452337*2^1290000-1 388341 L3419 2013 3118 567325505337*2^1290000-1 388341 L3401 2013 3119 567065977905*2^1290000-1 388341 L3508 2013 3120 566645493027*2^1290000-1 388341 L350 2013 3121 563283929985*2^1290000-1 388341 L3507 2013 3122 562952221197*2^1290000-1 388341 L3503 2013 3123 562423570665*2^1290000-1 388341 L1319 2013 3124 562271489685*2^1290000-1 388341 L3347 2013 3125 558276767097*2^1290000-1 388341 L3503 2013 3126 557527008717*2^1290000-1 388341 L1319 2013 3127 556815267057*2^1290000-1 388341 L3401 2013 3128 555989462955*2^1290000-1 388341 L3403 2013 3129 555736606917*2^1290000-1 388341 L3504 2013 3130 555042149055*2^1290000-1 388341 L2511 2013 3131 552455634117*2^1290000-1 388341 L596 2013 3132 552145774407*2^1290000-1 388341 L3371 2013 3133 551929936467*2^1290000-1 388341 L2694 2013 3134 551474562795*2^1290000-1 388341 L3401 2013 3135 550294305207*2^1290000-1 388341 L2576 2013 3136 549628699977*2^1290000-1 388341 L3498 2013 3137 549591461445*2^1290000-1 388341 L3499 2013 3138 547763257797*2^1290000-1 388341 L3381 2013 3139 546936507507*2^1290000-1 388341 L2429 2013 3140 545735276445*2^1290000-1 388341 L2457 2013 3141 544542834225*2^1290000-1 388341 L3321 2013 3142 543921100065*2^1290000-1 388341 L3498 2013 3143 543713681775*2^1290000-1 388341 L3331 2013 3144 542770459917*2^1290000-1 388341 L3203 2013 3145 542416935777*2^1290000-1 388341 L3491 2013 3146 542283938787*2^1290000-1 388341 L2078 2013 3147 541570384875*2^1290000-1 388341 L3493 2013 3148 541471202085*2^1290000-1 388341 L3495 2013 3149 540975050367*2^1290000-1 388341 L2511 2013 3150 538712617707*2^1290000-1 388341 L3492 2013 3151 538082595237*2^1290000-1 388341 L2592 2013 3152 536358872805*2^1290000-1 388341 L3414 2013 3153 535503468705*2^1290000-1 388341 L3486 2013 3154 534035409477*2^1290000-1 388341 L3401 2013 3155 533170852965*2^1290000-1 388341 L3484 2013 3156 532418746785*2^1290000-1 388341 L2513 2013 3157 532404378525*2^1290000-1 388341 L3331 2013 3158 531855541917*2^1290000-1 388341 L3203 2013 3159 531043987287*2^1290000-1 388341 L3488 2013 3160 530923354617*2^1290000-1 388341 L3496 2013 3161 530777731167*2^1290000-1 388341 L3274 2013 3162 529531285257*2^1290000-1 388341 L2429 2013 3163 529257936177*2^1290000-1 388341 L2438 2013 3164 529057346727*2^1290000-1 388341 L1319 2013 3165 528602512707*2^1290000-1 388341 L3482 2013 3166 526027719045*2^1290000-1 388341 L3419 2013 3167 524341294227*2^1290000-1 388341 L3480 2013 3168 524136855195*2^1290000-1 388341 L3321 2013 3169 523530466587*2^1290000-1 388341 L3479 2013 3170 516998500665*2^1290000-1 388341 L3274 2013 3171 514525069425*2^1290000-1 388341 L3401 2013 3172 514407948465*2^1290000-1 388341 L3203 2013 3173 514090509387*2^1290000-1 388341 L3274 2013 3174 513723027177*2^1290000-1 388341 L1948 2013 3175 513519859785*2^1290000-1 388341 L1319 2013 3176 511783584975*2^1290000-1 388341 L3478 2013 3177 510926069745*2^1290000-1 388341 L3203 2013 3178 510293735415*2^1290000-1 388341 L3474 2013 3179 509489086125*2^1290000-1 388341 L3274 2013 3180 504246821325*2^1290000-1 388341 L1704 2013 3181 502725411867*2^1290000-1 388341 L324 2013 3182 502051417905*2^1290000-1 388341 L3203 2013 3183 501535801035*2^1290000-1 388341 L1589 2013 3184 501099334437*2^1290000-1 388341 L3394 2013 3185 500797558137*2^1290000-1 388341 L3426 2013 3186 498983752545*2^1290000-1 388341 L3429 2013 3187 498742912167*2^1290000-1 388341 L3433 2013 3188 495979824777*2^1290000-1 388341 L3274 2013 3189 495395016165*2^1290000-1 388341 L3434 2013 3190 492105155355*2^1290000-1 388341 L3429 2013 3191 490304446095*2^1290000-1 388341 L2754 2013 3192 490219448607*2^1290000-1 388341 L3274 2013 3193 488346762615*2^1290000-1 388341 L3274 2013 3194 487982955705*2^1290000-1 388341 L3274 2013 3195 487546507035*2^1290000-1 388341 L3203 2013 3196 487181668965*2^1290000-1 388341 L3370 2013 3197 486388606077*2^1290000-1 388341 L3274 2013 3198 483590093385*2^1290000-1 388341 L3425 2013 3199 483037018875*2^1290000-1 388341 L3364 2013 3200 482707780095*2^1290000-1 388341 L1566 2013 3201 481466629917*2^1290000-1 388341 L2679 2013 3202 481206806505*2^1290000-1 388341 L3274 2013 3203 478721887857*2^1290000-1 388341 L2382 2013 3204 478231940697*2^1290000-1 388341 L3424 2013 3205 478122454647*2^1290000-1 388341 L3274 2013 3206 477193095615*2^1290000-1 388341 L3274 2013 3207 476420190477*2^1290000-1 388341 L3274 2013 3208 475923957327*2^1290000-1 388341 L3408 2013 3209 474545076717*2^1290000-1 388341 L3274 2013 3210 472272459375*2^1290000-1 388341 L3274 2013 3211 471930299277*2^1290000-1 388341 L3274 2013 3212 470489079777*2^1290000-1 388341 L3274 2013 3213 468362986905*2^1290000-1 388341 L3274 2013 3214 468131627955*2^1290000-1 388341 L3274 2013 3215 466183143855*2^1290000-1 388341 L3274 2013 3216 466053081195*2^1290000-1 388341 L3406 2013 3217 466012946187*2^1290000-1 388341 L2511 2013 3218 464751767235*2^1290000-1 388341 L341 2013 3219 464642860755*2^1290000-1 388341 L3408 2013 3220 464211505485*2^1290000-1 388341 L3421 2013 3221 462720783765*2^1290000-1 388341 L3274 2013 3222 460079202795*2^1290000-1 388341 L3274 2013 3223 459743401245*2^1290000-1 388341 L3419 2013 3224 458967184485*2^1290000-1 388341 L3203 2013 3225 458423603277*2^1290000-1 388341 L1709 2013 3226 454117301367*2^1290000-1 388341 L3414 2013 3227 453546687195*2^1290000-1 388341 L3411 2013 3228 452727224595*2^1290000-1 388341 L1591 2013 3229 452642177067*2^1290000-1 388341 L3558 2013 3230 452177767305*2^1290000-1 388341 L3274 2013 3231 451995338007*2^1290000-1 388341 L3274 2013 3232 450384051945*2^1290000-1 388341 L3416 2013 3233 449590794345*2^1290000-1 388341 L1920 2013 3234 444461468607*2^1290000-1 388341 L3274 2013 3235 441308694687*2^1290000-1 388341 L3408 2013 3236 439341206577*2^1290000-1 388341 L3420 2013 3237 438477490227*2^1290000-1 388341 L3374 2013 3238 438364166205*2^1290000-1 388341 L1566 2013 3239 437917057497*2^1290000-1 388341 L3407 2013 3240 437325048657*2^1290000-1 388341 L3274 2013 3241 436607622117*2^1290000-1 388341 L3274 2013 3242 436478024895*2^1290000-1 388341 L2511 2013 3243 436055812185*2^1290000-1 388341 L2773 2013 3244 435927336225*2^1290000-1 388341 L3274 2013 3245 435912195117*2^1290000-1 388341 L3203 2013 3246 433010529945*2^1290000-1 388341 L3406 2013 3247 428717133117*2^1290000-1 388341 L1920 2013 3248 428274732825*2^1290000-1 388341 L3351 2013 3249 427175730777*2^1290000-1 388341 L3346 2013 3250 426981529275*2^1290000-1 388341 L3408 2013 3251 426737166705*2^1290000-1 388341 L3274 2013 3252 425503288395*2^1290000-1 388341 L3274 2013 3253 425299333305*2^1290000-1 388341 L3406 2013 3254 422035568997*2^1290000-1 388341 L3274 2013 3255 421730567295*2^1290000-1 388341 L3274 2013 3256 421019352015*2^1290000-1 388341 L3408 2013 3257 418900895157*2^1290000-1 388341 L2511 2013 3258 417689147295*2^1290000-1 388341 L2573 2013 3259 416920273425*2^1290000-1 388341 L3274 2013 3260 416910000045*2^1290000-1 388341 L2414 2013 3261 416527998267*2^1290000-1 388341 L1920 2013 3262 415200631965*2^1290000-1 388341 L3274 2013 3263 413741476575*2^1290000-1 388341 L3402 2013 3264 412802577777*2^1290000-1 388341 L3401 2013 3265 411400570875*2^1290000-1 388341 L3403 2013 3266 408052817385*2^1290000-1 388341 L3274 2013 3267 405016485417*2^1290000-1 388341 L3399 2013 3268 404450582655*2^1290000-1 388341 L3274 2013 3269 403975756275*2^1290000-1 388341 L3274 2013 3270 403420675947*2^1290000-1 388341 L958 2013 3271 402776612535*2^1290000-1 388341 L1878 2013 3272 402258232425*2^1290000-1 388341 L3274 2013 3273 402133268805*2^1290000-1 388341 L3274 2013 3274 401208945867*2^1290000-1 388341 L3382 2013 3275 399430753647*2^1290000-1 388341 L1878 2013 3276 398418183117*2^1290000-1 388341 L1219 2013 3277 397630568025*2^1290000-1 388341 L3382 2013 3278 397062502587*2^1290000-1 388341 L1920 2013 3279 395796534105*2^1290000-1 388341 L3398 2013 3280 393755567235*2^1290000-1 388341 L1921 2013 3281 391663070727*2^1290000-1 388341 L339 2013 3282 389472350787*2^1290000-1 388341 L3203 2013 3283 388885035327*2^1290000-1 388341 L3396 2013 3284 388560534435*2^1290000-1 388341 L2573 2013 3285 387306335355*2^1290000-1 388341 L975 2013 3286 385503198645*2^1290000-1 388341 L3321 2013 3287 382888657287*2^1290000-1 388341 L2265 2013 3288 381922845405*2^1290000-1 388341 L3400 2013 3289 380782489155*2^1290000-1 388341 L3394 2013 3290 380775574335*2^1290000-1 388341 L3393 2013 3291 378007820157*2^1290000-1 388341 L2672 2013 3292 374411762805*2^1290000-1 388341 L3339 2013 3293 369122650197*2^1290000-1 388341 L3274 2013 3294 369006330537*2^1290000-1 388341 L955 2013 3295 364461749535*2^1290000-1 388341 L3274 2013 3296 362503367145*2^1290000-1 388341 L3382 2013 3297 361379454135*2^1290000-1 388341 L3382 2013 3298 360149900547*2^1290000-1 388341 L2600 2013 3299 359877353517*2^1290000-1 388341 L3391 2013 3300 359587336335*2^1290000-1 388341 L1866 2013 3301 359064382245*2^1290000-1 388341 L2472 2013 3302 358210953207*2^1290000-1 388341 L3382 2013 3303 355678913445*2^1290000-1 388341 L2283 2013 3304 355665110127*2^1290000-1 388341 L2379 2013 3305 354721848567*2^1290000-1 388341 L2379 2013 3306 351910312257*2^1290000-1 388341 L1920 2013 3307 351809291337*2^1290000-1 388341 L3388 2013 3308 351479778855*2^1290000-1 388341 L2511 2013 3309 349652325447*2^1290000-1 388341 L3387 2013 3310 349574475297*2^1290000-1 388341 L2379 2013 3311 348711084015*2^1290000-1 388341 L3274 2013 3312 347101956357*2^1290000-1 388341 L3392 2013 3313 346864603797*2^1290000-1 388341 L3384 2013 3314 345129242337*2^1290000-1 388341 L3390 2013 3315 343251791157*2^1290000-1 388341 L3383 2013 3316 343057896135*2^1290000-1 388341 L3382 2013 3317 341816713665*2^1290000-1 388341 L3381 2013 3318 341365397037*2^1290000-1 388341 L3380 2013 3319 339806310177*2^1290000-1 388341 L3274 2013 3320 339519840987*2^1290000-1 388341 L3274 2013 3321 336417947565*2^1290000-1 388341 L3274 2013 3322 336094377897*2^1290000-1 388341 L3379 2013 3323 331571640507*2^1290000-1 388341 L2449 2013 3324 329105404995*2^1290000-1 388341 L2090 2013 3325 325627281705*2^1290000-1 388341 L1814 2013 3326 325022118267*2^1290000-1 388341 L2592 2013 3327 324405963567*2^1290000-1 388341 L975 2013 3328 323721714825*2^1290000-1 388341 L3374 2013 3329 323180607615*2^1290000-1 388341 L324 2013 3330 323151630597*2^1290000-1 388341 L2249 2013 3331 323062155117*2^1290000-1 388341 L2511 2013 3332 323032715775*2^1290000-1 388341 L3321 2013 3333 322458158997*2^1290000-1 388341 L2204 2013 3334 321326067837*2^1290000-1 388341 L2449 2013 3335 318109905615*2^1290000-1 388341 L3373 2013 3336 317525245347*2^1290000-1 388341 L3371 2013 3337 315206425035*2^1290000-1 388341 L3274 2013 3338 314138547285*2^1290000-1 388341 L3274 2013 3339 313644839055*2^1290000-1 388341 L3370 2013 3340 312580841685*2^1290000-1 388341 L3274 2013 3341 312435776037*2^1290000-1 388341 L1704 2013 3342 311422843587*2^1290000-1 388341 L1745 2013 3343 310812367497*2^1290000-1 388341 L3375 2013 3344 310491816507*2^1290000-1 388341 L3346 2013 3345 309431698875*2^1290000-1 388341 L3274 2013 3346 309125593227*2^1290000-1 388341 L3321 2013 3347 307795218687*2^1290000-1 388341 L2379 2013 3348 306223342407*2^1290000-1 388341 L3369 2013 3349 303771085455*2^1290000-1 388341 L2083 2013 3350 300377054607*2^1290000-1 388341 L3364 2013 3351 299556989487*2^1290000-1 388341 L3203 2013 3352 297145470657*2^1290000-1 388341 L3404 2013 3353 295499484735*2^1290000-1 388341 L3274 2013 3354 294333095247*2^1290000-1 388341 L3360 2013 3355 294176747907*2^1290000-1 388341 L3395 2013 3356 293988475497*2^1290000-1 388341 L1697 2013 3357 288326168427*2^1290000-1 388341 L3357 2013 3358 287991223887*2^1290000-1 388341 L1589 2013 3359 286852475595*2^1290000-1 388341 L3255 2013 3360 286688330805*2^1290000-1 388341 L3359 2013 3361 286622010675*2^1290000-1 388341 L2379 2013 3362 286371264795*2^1290000-1 388341 L2249 2013 3363 283483489905*2^1290000-1 388341 L2379 2013 3364 283269826017*2^1290000-1 388341 L1684 2013 3365 283141970085*2^1290000-1 388341 L3355 2013 3366 281151438795*2^1290000-1 388341 L2379 2013 3367 281120825067*2^1290000-1 388341 L3346 2013 3368 278822882037*2^1290000-1 388341 L3203 2013 3369 278807949387*2^1290000-1 388341 L2592 2013 3370 278469371715*2^1290000-1 388341 L3351 2013 3371 275590614537*2^1290000-1 388341 L3365 2013 3372 275470214925*2^1290000-1 388341 L3203 2013 3373 272759221245*2^1290000-1 388341 L3203 2013 3374 270952368585*2^1290000-1 388341 L3349 2013 3375 270531056787*2^1290000-1 388341 L3350 2013 3376 270043531455*2^1290000-1 388341 L3210 2013 3377 269009459325*2^1290000-1 388341 L3274 2013 3378 268379334447*2^1290000-1 388341 L3274 2013 3379 268081360785*2^1290000-1 388341 L3203 2013 3380 267934317495*2^1290000-1 388341 L3332 2013 3381 267257797635*2^1290000-1 388341 L3337 2013 3382 263847069405*2^1290000-1 388341 L3347 2013 3383 262612971045*2^1290000-1 388341 L3274 2013 3384 261643415715*2^1290000-1 388341 L2438 2012 3385 260849015397*2^1290000-1 388341 L3203 2012 3386 260715365475*2^1290000-1 388341 L1929 2012 3387 260227577727*2^1290000-1 388341 L3274 2012 3388 260109856197*2^1290000-1 388341 L3274 2012 3389 260093628975*2^1290000-1 388341 L3346 2012 3390 258572084955*2^1290000-1 388341 L3274 2012 3391 252970964277*2^1290000-1 388341 L3203 2012 3392 251309396835*2^1290000-1 388341 L1319 2012 3393 251269114257*2^1290000-1 388341 L1319 2012 3394 250180546665*2^1290000-1 388341 L1704 2012 3395 248186300367*2^1290000-1 388341 L3274 2012 3396 246240340467*2^1290000-1 388341 L3274 2012 3397 244704278205*2^1290000-1 388341 L3341 2012 3398 244623864417*2^1290000-1 388341 L2354 2012 3399 241209176217*2^1290000-1 388341 L3342 2012 3400 239413763685*2^1290000-1 388341 L2449 2012 3401 234475865655*2^1290000-1 388341 L3274 2012 3402 232778043615*2^1290000-1 388341 L3339 2012 3403 232740942315*2^1290000-1 388341 L3274 2012 3404 232328690025*2^1290000-1 388341 L2457 2012 3405 231572092755*2^1290000-1 388341 L3340 2012 3406 230348154045*2^1290000-1 388341 L955 2012 3407 225597278625*2^1290000-1 388341 L3331 2012 3408 223708869267*2^1290000-1 388341 L3337 2012 3409 218503291197*2^1290000-1 388341 L3274 2012 3410 216416889747*2^1290000-1 388341 L1929 2012 3411 214133231697*2^1290000-1 388341 L927 2012 3412 213551907327*2^1290000-1 388341 L3274 2012 3413 213198352425*2^1290000-1 388341 L3274 2012 3414 212135542017*2^1290000-1 388341 L927 2012 3415 206951361687*2^1290000-1 388341 L1637 2012 3416 204320222925*2^1290000-1 388341 L3330 2012 3417 203226067005*2^1290000-1 388341 L3274 2012 3418 201526452825*2^1290000-1 388340 L3274 2012 3419 200476914855*2^1290000-1 388340 L927 2012 3420 199585358175*2^1290000-1 388340 L3274 2012 3421 199394692497*2^1290000-1 388340 L3274 2012 3422 199294582755*2^1290000-1 388340 L955 2012 3423 199069404915*2^1290000-1 388340 L3274 2012 3424 198089444247*2^1290000-1 388340 L3274 2012 3425 197583066117*2^1290000-1 388340 L955 2012 3426 196125259785*2^1290000-1 388340 L3274 2012 3427 192026664657*2^1290000-1 388340 L3274 2012 3428 191408032317*2^1290000-1 388340 L3274 2012 3429 188190677397*2^1290000-1 388340 L3274 2012 3430 188177713677*2^1290000-1 388340 L3334 2012 3431 187663366467*2^1290000-1 388340 L927 2012 3432 180160106877*2^1290000-1 388340 L3331 2012 3433 179253304767*2^1290000-1 388340 L927 2012 3434 179108866545*2^1290000-1 388340 L3274 2012 3435 178994497575*2^1290000-1 388340 L2368 2012 3436 178847912745*2^1290000-1 388340 L3330 2012 3437 177472004367*2^1290000-1 388340 L2379 2012 3438 173890572975*2^1290000-1 388340 L3274 2012 3439 164136998667*2^1290000-1 388340 L2449 2012 3440 164130856365*2^1290000-1 388340 L3274 2012 3441 163354130247*2^1290000-1 388340 L3274 2012 3442 162624326205*2^1290000-1 388340 L3274 2012 3443 162236489067*2^1290000-1 388340 L3274 2012 3444 159234953055*2^1290000-1 388340 L3332 2012 3445 157842034035*2^1290000-1 388340 L3274 2012 3446 157608823797*2^1290000-1 388340 L3328 2012 3447 156343422987*2^1290000-1 388340 L3274 2012 3448 151155604437*2^1290000-1 388340 L3322 2012 3449 151013786217*2^1290000-1 388340 L2164 2012 3450 149875663077*2^1290000-1 388340 L3274 2012 3451 148042284915*2^1290000-1 388340 L3274 2012 3452 145028100747*2^1290000-1 388340 L3274 2012 3453 144643566987*2^1290000-1 388340 L3274 2012 3454 144033075777*2^1290000-1 388340 L2679 2012 3455 143858211957*2^1290000-1 388340 L3274 2012 3456 143727108945*2^1290000-1 388340 L3274 2012 3457 142726671747*2^1290000-1 388340 L3274 2012 3458 142631667285*2^1290000-1 388340 L2354 2012 3459 141451978605*2^1290000-1 388340 L3321 2012 3460 139942421115*2^1290000-1 388340 L3274 2012 3461 139604474667*2^1290000-1 388340 L3274 2012 3462 134368933107*2^1290000-1 388340 L2753 2012 3463 129948302025*2^1290000-1 388340 L2164 2012 3464 128031171567*2^1290000-1 388340 L3252 2012 3465 126206397135*2^1290000-1 388340 L2164 2012 3466 125000856225*2^1290000-1 388340 L2457 2012 3467 124901305767*2^1290000-1 388340 L3316 2012 3468 124490444505*2^1290000-1 388340 L2679 2012 3469 120858765657*2^1290000-1 388340 L1430 2012 3470 120816250005*2^1290000-1 388340 L3216 2012 3471 120238040277*2^1290000-1 388340 L2457 2012 3472 119948786085*2^1290000-1 388340 L2457 2012 3473 119117512797*2^1290000-1 388340 L1430 2012 3474 119033472225*2^1290000-1 388340 L3252 2012 3475 117474057165*2^1290000-1 388340 L1588 2012 3476 116194215975*2^1290000-1 388340 L2197 2012 3477 115619101425*2^1290000-1 388340 L1126 2012 3478 113105840787*2^1290000-1 388340 L3287 2012 3479 113018799645*2^1290000-1 388340 L3203 2012 3480 110657314995*2^1290000-1 388340 L3235 2012 3481 110261397207*2^1290000-1 388340 L2197 2012 3482 109785059895*2^1290000-1 388340 L1219 2012 3483 109728390567*2^1290000-1 388340 L2430 2012 3484 109602297105*2^1290000-1 388340 L327 2012 3485 108456662097*2^1290000-1 388340 L3274 2012 3486 106106030067*2^1290000-1 388340 L3274 2012 3487 104252569725*2^1290000-1 388340 L3270 2012 3488 103809047877*2^1290000-1 388340 L2679 2012 3489 102979478985*2^1290000-1 388340 L3240 2012 3490 102649169667*2^1290000-1 388340 L3228 2012 3491 102249845505*2^1290000-1 388340 L927 2012 3492 100492076865*2^1290000-1 388340 L2504 2012 3493 98571391305*2^1290000-1 388340 L2679 2012 3494 96382357725*2^1290000-1 388340 L2250 2012 3495 95886360717*2^1290000-1 388340 L2680 2012 3496 94451818965*2^1290000-1 388340 L1637 2012 3497 93693950385*2^1290000-1 388340 L3558 2012 3498 93083051085*2^1290000-1 388340 L3235 2012 3499 91591849695*2^1290000-1 388340 L2283 2012 3500 90446547765*2^1290000-1 388340 L3235 2012 3501 88769823315*2^1290000-1 388340 L3235 2012 3502 87988707537*2^1290000-1 388340 L3235 2012 3503 86374243377*2^1290000-1 388340 L2197 2012 3504 85794708807*2^1290000-1 388340 L3252 2012 3505 83743656027*2^1290000-1 388340 L3235 2012 3506 80303450925*2^1290000-1 388340 L2478 2012 3507 78681832677*2^1290000-1 388340 L3228 2012 3508 74675041395*2^1290000-1 388340 L3255 2012 3509 74231734815*2^1290000-1 388340 L3256 2012 3510 72835395717*2^1290000-1 388340 L3252 2012 3511 71741989455*2^1290000-1 388340 L3251 2012 3512 71626994637*2^1290000-1 388340 L3258 2012 3513 67762687755*2^1290000-1 388340 L1684 2012 3514 67400286705*2^1290000-1 388340 L927 2012 3515 67157081175*2^1290000-1 388340 L3203 2012 3516 67098088347*2^1290000-1 388340 L1430 2012 3517 66947810457*2^1290000-1 388340 L324 2012 3518 64932421227*2^1290000-1 388340 L3247 2012 3519 61579159647*2^1290000-1 388340 L324 2012 3520 60496370625*2^1290000-1 388340 L324 2012 3521 58109428725*2^1290000-1 388340 L324 2012 3522 57670269765*2^1290000-1 388340 L1591 2012 3523 56617104687*2^1290000-1 388340 L927 2012 3524 55829500977*2^1290000-1 388340 L3218 2012 3525 53955457827*2^1290000-1 388340 L3242 2012 3526 53568698727*2^1290000-1 388340 L3240 2012 3527 48325829277*2^1290000-1 388340 L3235 2012 3528 47104579725*2^1290000-1 388340 L2407 2012 3529 46936849605*2^1290000-1 388340 L3235 2012 3530 46395065715*2^1290000-1 388340 L3236 2012 3531 41291130657*2^1290000-1 388340 L1866 2012 3532 40870411575*2^1290000-1 388340 L3228 2012 3533 37892782587*2^1290000-1 388340 L990 2012 3534 37336992075*2^1290000-1 388340 L3226 2012 3535 35970599667*2^1290000-1 388340 L3226 2012 3536 35783326245*2^1290000-1 388340 L3226 2012 3537 34158740037*2^1290000-1 388340 L3226 2012 3538 31188104787*2^1290000-1 388340 L3204 2012 3539 30185015115*2^1290000-1 388340 L3226 2012 3540 27706601877*2^1290000-1 388340 L3204 2012 3541 26268238845*2^1290000-1 388340 L3227 2012 3542 25940129427*2^1290000-1 388340 L3226 2012 3543 25759355835*2^1290000-1 388340 L3226 2012 3544 24441821505*2^1290000-1 388340 L3226 2012 3545 24291776847*2^1290000-1 388340 L3226 2012 3546 22811654325*2^1290000-1 388340 L3226 2012 3547 22781007375*2^1290000-1 388340 L1684 2012 3548 21141924615*2^1290000-1 388340 L1684 2012 3549 19793417607*2^1290000-1 388339 L3224 2012 3550 15882136965*2^1290000-1 388339 L3218 2012 3551 12814002747*2^1290000-1 388339 L1603 2012 3552 12257525817*2^1290000-1 388339 L3203 2012 3553 11389198515*2^1290000-1 388339 L3216 2012 3554 11340242595*2^1290000-1 388339 L3214 2012 3555 11211544347*2^1290000-1 388339 L1430 2012 3556 8909655825*2^1290000-1 388339 L3210 2012 3557 8575097877*2^1290000-1 388339 L3208 2012 3558 5792192997*2^1290000-1 388339 L989 2012 3559 3347418345*2^1290000-1 388339 L1433 2012 3560 3160221645*2^1290000-1 388339 L3203 2012 3561 2862479727*2^1290000-1 388339 L3204 2012 3562 835738017*2^1290000-1 388338 L596 2012 3563 45340243*2^1290000+1 388337 L3494 2014 3564 1313*2^1289857+1 388289 L2038 2014 3565 3825*2^1289835+1 388283 L3943 2014 3566 8859*2^1289562+1 388201 L3034 2014 3567 6507*2^1289544+1 388196 L1792 2014 3568 455*2^1289501+1 388182 L2909 2012 3569 5913*2^1289424+1 388160 L3476 2014 3570 1963*2^1289304+1 388123 L2487 2014 3571 307*2^1289306+1 388123 L1204 2012 3572 6877*2^1289238+1 388104 L3941 2014 3573 9067*2^1289228+1 388101 L2562 2014 3574 1451*2^1289221+1 388098 L1823 2014 3575 9595*2^1289176+1 388085 L2549 2014 3576 10^388080-10^112433-1 388080 CH8 2014 Near-repdigit (**) 3577 10^388080-10^180868-1 388080 p377 2014 Near-repdigit 3578 3821*2^1289141+1 388074 L1741 2014 3579 9975*2^1289056-1 388049 L2338 2013 3580 665*2^1289005+1 388032 L2816 2011 3581 2703*2^1288978+1 388025 L2823 2014 3582 8649*2^1288929+1 388011 L2845 2014 3583 167*2^1288922-1 388007 L1862 2013 3584 6739*2^1288866+1 387992 L3797 2014 3585 1595*2^1288823+1 387978 L3271 2014 3586 439*2^1288818+1 387976 L2917 2012 3587 2181*2^1288743+1 387954 L3942 2014 3588 5067*2^1288687+1 387938 L3937 2014 3589 5751*2^1288656+1 387928 L1741 2014 3590 5247*2^1288639+1 387923 L1185 2014 3591 2538*30^262614-1 387917 p268 2012 3592 7093*2^1288616+1 387916 L1379 2014 3593 4055*2^1288567+1 387901 L2038 2014 3594 5667*2^1288522+1 387888 L1741 2014 3595 8509*2^1288362+1 387840 L3938 2014 3596 1353*2^1288188+1 387787 L2627 2014 3597 135*2^1288177-1 387783 L1959 2011 3598 4217*2^1287911+1 387704 L3035 2014 3599 7335*2^1287812+1 387674 L1972 2014 3600 7387*2^1287780+1 387665 L3937 2014 3601 527*2^1287756-1 387656 L1817 2013 3602 6605*2^1287563+1 387599 L2038 2014 3603 2631*2^1287407+1 387552 L3035 2014 3604 8061*2^1287215+1 387495 L3797 2014 3605 4797*2^1287210+1 387493 L1741 2014 3606 1203*2^1287200+1 387489 L2626 2014 3607 1153*2^1287198+1 387489 L2815 2011 3608 7097*2^1287007+1 387432 L3713 2014 3609 3207*2^1286940+1 387412 L1502 2014 3610 4111*2^1286884+1 387395 L3928 2014 3611 5139*2^1286789+1 387366 L2675 2014 3612 5271*2^1286688+1 387336 L3930 2014 3613 6819*2^1286677+1 387333 L2845 2014 3614 8527*2^1286590+1 387307 L3931 2014 3615 5457*2^1286566+1 387299 L3924 2014 3616 6495*2^1286528+1 387288 L3927 2014 3617 1657*2^1286454+1 387265 L1792 2014 3618 4949*2^1286431+1 387259 L1186 2014 3619 1665*2^1286419+1 387254 L3439 2014 3620 603*2^1286394+1 387246 L2702 2011 3621 5511*2^1286381+1 387244 L3926 2014 3622 4097*2^1286239+1 387201 L2826 2014 3623 6867*2^1286163+1 387178 L3895 2014 3624 2067*2^1286047+1 387143 L2664 2014 3625 5317*2^1285922+1 387105 L3797 2014 3626 5273*2^1285885+1 387094 L3931 2014 3627 2723*2^1285805+1 387070 L1408 2014 3628 9417*2^1285798+1 387068 L2826 2014 3629 2115*2^1285772+1 387060 L3037 2014 3630 7685*2^1285735+1 387049 L2613 2014 3631 3667*2^1285690+1 387035 L1792 2014 3632 2991*2^1285689+1 387035 L3919 2014 3633 2757*2^1285670+1 387029 L1741 2014 3634 305*2^1285643+1 387020 L1209 2012 3635 8681*2^1285439+1 386960 L3922 2014 3636 1025*2^1285388-1 386944 L1828 2012 3637 795*2^1285388-1 386944 L1817 2014 3638 3515*2^1285355+1 386934 L1344 2014 3639 9415*2^1285294+1 386917 L2613 2014 3640 6101*2^1285091+1 386855 L1124 2014 3641 1957*2^1284992+1 386825 L3913 2014 Divides GF(1284991,6) 3642 3963*2^1284962+1 386816 L3035 2014 3643 1725*2^1284830+1 386776 L1741 2014 3644 1195*2^1284795-1 386765 L1828 2012 3645 2383*2^1284786+1 386763 L3912 2014 3646 2391*2^1284747+1 386751 L2038 2014 3647 4659*2^1284727+1 386746 L3008 2014 3648 4271*2^1284713+1 386741 L2049 2014 3649 9279*2^1284711+1 386741 L3246 2014 3650 8427*2^1284667+1 386728 L3037 2014 3651 6239*2^1284619+1 386713 L3035 2014 3652 5565*2^1284428+1 386656 L3909 2014 3653 243*2^1284429+1 386655 L165 2011 (**) 3654 4*257^160422+1 386607 p258 2011 Generalized Fermat 3655 9557*2^1284051+1 386542 L2649 2014 3656 9851*2^1283975+1 386519 L2997 2014 3657 4183*2^1283856+1 386483 L3910 2014 3658 138847*2^1283793-1 386466 L2 2003 3659 5647*2^1283778+1 386460 L1792 2014 3660 2759*2^1283727+1 386444 L3037 2014 3661 8535*2^1283674+1 386429 L2038 2014 3662 6707*2^1283595+1 386405 L1130 2014 3663 453*2^1283560-1 386393 L1817 2013 3664 2665*2^1283544+1 386389 L3908 2014 3665 1785*2^1283540+1 386388 L3797 2014 3666 7763*2^1283497+1 386375 L1792 2014 3667 1015*2^1283425-1 386353 L1828 2012 3668 4043*2^1283396-1 386345 L1959 2013 3669 1893*2^1283297+1 386315 L3907 2014 3670 131*2^1283258-1 386302 L1862 2011 3671 875*2^1283164-1 386274 L1817 2014 3672 8045*2^1283157+1 386273 L1741 2014 3673 1605*2^1283068+1 386246 L3035 2014 3674 6675*2^1283011+1 386229 L3649 2014 3675 9857*2^1282951+1 386211 L1792 2014 3676 7805*2^1282933+1 386206 L2659 2014 3677 3219*2^1282906+1 386197 L3905 2014 3678 5153*2^1282889+1 386192 L1741 2014 3679 8819*2^1282837+1 386177 L1792 2014 3680 4459*2^1282766+1 386155 L1741 2014 3681 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 3682 5609*2^1282695+1 386134 L3727 2014 3683 259*2^1282582+1 386099 L1818 2012 3684 1145*2^1282568-1 386095 L1828 2012 3685 6459*2^1282497+1 386074 L3797 2014 3686 3391*2^1282496+1 386074 L2827 2014 3687 9625*2^1282410+1 386048 L3035 2014 3688 1961*2^1282153+1 385970 L3717 2014 3689 1093*2^1282080+1 385948 L2322 2011 3690 569*2^1282077+1 385947 L1387 2011 3691 1189*2^1282034+1 385934 L2814 2011 3692 9409*2^1282030+1 385934 L2038 2014 Generalized Fermat 3693 6321*2^1281917+1 385900 L1792 2014 3694 4659*2^1281914+1 385899 L2981 2014 3695 3007*2^1281862+1 385883 L3262 2014 3696 1353*2^1281777+1 385857 L1408 2014 3697 2685*2^1281694+1 385832 L1792 2014 3698 1141*2^1281659-1 385821 L1828 2012 3699 5263*2^1281460+1 385762 L3262 2014 3700 181*2^1281453-1 385759 L2484 2011 3701 105782*5^551766-1 385673 p306 2010 3702 6295*2^1281088+1 385650 L2117 2014 3703 767*2^1281080-1 385647 L1817 2013 3704 9573*2^1280958+1 385611 L3262 2014 3705 759*2^1280948-1 385607 L1817 2013 3706 8909*2^1280941+1 385606 L3262 2014 3707 7751*2^1280887+1 385590 L3262 2014 3708 8319*2^1280861+1 385582 L3246 2014 3709 6771*2^1280821+1 385570 L3262 2014 3710 9093*2^1280790+1 385561 L1792 2014 3711 3943*2^1280698+1 385533 L3262 2014 3712 5811*2^1280612+1 385507 L3902 2014 3713 6309*2^1280581+1 385498 L3262 2014 3714 6181*2^1280464+1 385462 L3865 2014 3715 9831*2^1280199+1 385383 L3865 2014 3716 2*101^192275+1 385382 L1471 2010 3717 6735*2^1280193+1 385381 L1792 2014 3718 8631*2^1280181+1 385377 L3014 2014 3719 7827*2^1280122+1 385360 L1792 2014 3720 623*2^1280125+1 385359 L2659 2011 3721 381*2^1279983+1 385316 L2908 2012 3722 8547*2^1279759+1 385250 L1733 2014 3723 2163*2^1279736+1 385243 L3901 2014 3724 6641*2^1279521+1 385179 L3262 2014 3725 3339*2^1279502+1 385173 L3262 2014 3726 3165*2^1279338+1 385123 L1444 2014 3727 6909*2^1279334+1 385122 L3262 2014 3728 5961*2^1279309+1 385115 L3727 2014 3729 665*2^1279234-1 385091 L1817 2013 3730 691*2^1279212+1 385085 L2626 2011 3731 1691*2^1279187+1 385077 L3865 2014 3732 2475*2^1279165+1 385071 L3262 2014 3733 5567*2^1279031+1 385031 L3262 2014 3734 9573*2^1279028+1 385030 L1741 2014 3735 2151*2^1278969+1 385012 L3859 2014 3736 7107*2^1278920+1 384998 L3671 2014 3737 945*2^1278825+1 384968 L1595 2011 3738 1439*2^1278565+1 384890 L3262 2014 (**) 3739 349*2^1278551-1 384885 L579 2010 3740 4503*2^1278517+1 384876 L3262 2014 3741 1105*2^1278476+1 384863 L2724 2011 3742 7905*2^1278334+1 384821 L1792 2014 3743 2407*2^1278334+1 384821 L2117 2014 3744 231*2^1278235-1 384790 L2338 2012 3745 3135*2^1278080+1 384744 L3262 2014 3746 9167*2^1278051+1 384736 L3262 2014 3747 7527*2^1278043+1 384734 L3898 2014 3748 2261*2^1277853+1 384676 L3262 2014 3749 4165*2^1277810+1 384663 L2038 2014 3750 9405*2^1277796+1 384659 L3262 2014 3751 8745*2^1277577+1 384593 L1576 2014 3752 7997*2^1277451+1 384555 L3262 2014 3753 8129*2^1277413+1 384544 L2626 2014 3754 2001*2^1277109-1 384452 L3345 2014 3755 2641*2^1277096+1 384448 L2520 2014 3756 6849*2^1277093+1 384448 L3035 2014 3757 5979*2^1277091+1 384447 L3894 2014 3758 7101*2^1277000+1 384420 L3262 2014 3759 9547*2^1276978+1 384413 L3262 2014 3760 2413*2^1276674+1 384321 L3262 2014 3761 141*2^1276616+1 384302 L2612 2012 (**) 3762 8727*2^1276471+1 384261 L3262 2014 3763 7269*2^1276455+1 384256 L3889 2014 3764 1981*2^1276439-1 384250 L1134 2012 3765 4759*2^1276322+1 384215 L3511 2014 3766 2013*2^1276311-1 384212 L3345 2014 3767 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) (**) 3768 3951*2^1276136+1 384159 L1125 2014 3769 205*2^1275889-1 384084 L384 2010 3770 5739*2^1275854+1 384075 L3888 2014 3771 255*2^1275596+1 383996 L2533 2012 3772 8679*2^1275563+1 383987 L3262 2014 3773 4737*2^1275487+1 383964 L3555 2014 3774 7971*2^1275429+1 383947 L3555 2014 3775 5533*2^1275420+1 383944 L3555 2014 3776 1407*2^1275375+1 383930 L2107 2014 3777 375*2^1275345-1 383920 L1819 2013 3778 8981*2^1275279+1 383902 L2888 2014 3779 7343*2^1275245+1 383891 L3893 2014 3780 975*2^1274973+1 383809 L2653 2011 3781 9317*2^1274819+1 383763 L3824 2014 3782 8509*2^1274778+1 383751 L1129 2014 3783 757*2^1274676+1 383719 L1935 2011 3784 1011*2^1274643+1 383709 L2736 2011 3785 5635*2^1274526+1 383675 L3262 2014 3786 4969*2^1274494+1 383665 L3262 2014 3787 9*10^383643-1 383644 p297 2011 Near-repdigit 3788 5523*2^1274412+1 383640 L3262 2014 3789 2955*2^1274306-1 383608 L1959 2013 3790 8315*2^1274209+1 383580 L3262 2014 3791 2445*2^1274079+1 383540 L3199 2014 3792 6995*2^1274071+1 383538 L1741 2014 3793 8595*2^1274054+1 383533 L3555 2014 3794 1185*2^1273795+1 383454 L2732 2011 3795 1779*2^1273794+1 383454 L3262 2014 3796 9069*2^1273757+1 383444 L3262 2014 3797 4477*2^1273732+1 383436 L3824 2014 3798 8253*2^1273730+1 383435 L1741 2014 3799 147*2^1273684-1 383420 L1959 2011 3800 9669*2^1273666+1 383416 L3555 2014 3801 1155*2^1273521+1 383372 L1505 2011 3802 7317*2^1273503+1 383367 L3885 2014 3803 923*2^1273465+1 383355 L2542 2011 3804 4215*2^1273246+1 383289 L1792 2014 3805 1103*2^1273105+1 383246 L1121 2011 (**) 3806 471*2^1273000+1 383214 L1933 2012 3807 2733*2^1272954+1 383201 L3262 2014 3808 6005*2^1272869+1 383176 L3262 2014 3809 6317*2^1272855+1 383172 L3483 2014 3810 6723*2^1272810+1 383158 L2520 2014 3811 677*2^1272716-1 383129 L1817 2013 3812 1625*2^1272685+1 383120 L1741 2014 3813 7313*2^1272657+1 383112 L3555 2014 3814 643*2^1272644+1 383107 L2522 2011 3815 7865*2^1272471+1 383056 L1733 2014 3816 89*2^1272457+1 383050 L1204 2011 (**) 3817 21701*2^1272326-1 383013 L2055 2012 3818 603*2^1272322-1 383010 L2257 2013 3819 9051*2^1272304+1 383006 L2038 2014 3820 5429*2^1272197+1 382974 L2520 2014 3821 8355*2^1272110+1 382948 L1741 2014 3822 1347*2^1271948-1 382898 L1828 2012 3823 2047*2^1271894+1 382882 L3262 2014 3824 8257*2^1271804+1 382856 L3262 2014 3825 4053*2^1271773+1 382846 L3824 2014 3826 5147*2^1271683+1 382819 L3783 2014 3827 9011*2^1271581+1 382788 L3271 2014 3828 5811*2^1271548+1 382778 L3262 2014 3829 6795*2^1271503+1 382765 L3154 2014 3830 108045*2^1271488-1 382762 L466 2013 3831 9387*2^1271488+1 382760 L3262 2014 3832 8205*2^1271355+1 382720 L1741 2014 3833 9387*2^1271326+1 382712 L3262 2014 3834 1191*2^1271153-1 382659 L1828 2012 3835 5835*2^1271108+1 382646 L1129 2014 3836 4167*2^1271064+1 382633 L1413 2014 3837 5835*2^1271037+1 382625 L2626 2014 3838 3255*2^1271014+1 382617 L2626 2014 3839 1385*2^1270984-1 382608 L1828 2012 3840 993*2^1270944-1 382596 L1817 2013 3841 1011*2^1270883+1 382577 L2813 2011 3842 4083*2^1270652+1 382508 L3859 2014 3843 4993*2^1270616+1 382498 L2626 2014 3844 1869*2^1270554+1 382479 L1741 2014 3845 6849*2^1270337+1 382414 L3859 2014 3846 7427*2^1270275+1 382395 L2785 2014 3847 4665*2^1270202+1 382373 L3859 2014 3848 4069*2^1270119-1 382348 L1959 2013 3849 4239*2^1270071+1 382334 L1733 2014 3850 5487*2^1270040+1 382324 L3877 2014 3851 4811*2^1269857+1 382269 L2520 2014 3852 163747*6^491241-1 382266 L2841 2012 Generalized Woodall (**) 3853 5327*2^1269751+1 382237 L3035 2014 3854 3479*2^1269701+1 382222 L3262 2014 3855 6337*2^1269674+1 382214 L3262 2014 3856 475*2^1269578+1 382184 L2802 2012 3857 70*383^147947-1 382179 L2012 2014 3858 3331*2^1269404+1 382133 L2322 2014 3859 1739*2^1269221+1 382077 L2517 2014 3860 251*2^1269198-1 382070 L251 2010 3861 565*2^1269153-1 382056 L1817 2013 3862 8793*2^1269062+1 382030 L3035 2014 3863 781*2^1269036+1 382021 L1935 2011 3864 1268979*2^1268979-1 382007 L201 2007 Woodall 3865 1235*2^1268980-1 382005 L1828 2012 3866 5931*2^1268949+1 381996 L3881 2014 3867 7315*2^1268942+1 381994 L3797 2014 3868 9487*2^1268934+1 381992 L2981 2014 3869 2769*2^1268925+1 381988 L2840 2014 3870 2459*2^1268661+1 381909 L2785 2014 3871 5313*2^1268624+1 381898 L3878 2014 3872 671600^65536+1 381886 g55 2002 Generalized Fermat 3873 225*2^1268579+1 381883 L2085 2012 3874 6725*2^1268551+1 381876 L3035 2014 3875 193*2^1268399-1 381829 L1959 2011 3876 5233*2^1268176+1 381763 L2549 2014 3877 3573*2^1268010+1 381713 L2626 2014 3878 3731*2^1268003+1 381711 L2649 2014 3879 7393*2^1267734+1 381630 L3035 2014 3880 4213*2^1267666+1 381610 L1741 2014 3881 965*2^1267454-1 381545 L1817 2013 3882 3207*2^1267439+1 381541 L3309 2014 3883 5241*2^1267309+1 381502 L2785 2014 3884 8537*2^1267263+1 381489 L3878 2014 3885 9163*2^1267256+1 381487 L3279 2014 3886 973*2^1267246+1 381483 L1745 2011 3887 1041*2^1267241-1 381481 L1828 2012 3888 987*2^1267175+1 381461 L2545 2011 3889 4731*2^1267159+1 381457 L3035 2014 3890 813*2^1267125+1 381446 L2821 2011 3891 4215*2^1267033+1 381419 L2549 2014 3892 937*2^1267000+1 381408 L2503 2011 3893 9543*2^1266921+1 381386 L3262 2014 3894 4051*2^1266809-1 381352 L1959 2013 3895 7645*2^1266736+1 381330 L1479 2014 3896 7479*2^1266635+1 381300 L1741 2014 3897 7629*2^1266613+1 381293 L3262 2014 3898 9479*2^1266575+1 381282 L3882 2014 3899 3277*2^1266516+1 381263 L3786 2014 3900 1411*2^1266504+1 381259 L2873 2014 3901 2175*2^1266475-1 381251 L1862 2013 3902 5395*2^1266442+1 381241 L1741 2014 3903 7595*2^1266427+1 381237 L1806 2014 3904 6861*2^1266348+1 381213 L3555 2014 3905 7625*2^1266329+1 381207 L3262 2014 3906 9341*2^1266173+1 381161 L1792 2014 3907 3321*2^1266069+1 381129 L2659 2014 3908 5505*2^1266048+1 381123 L2549 2014 3909 1603*2^1266006+1 381109 L1741 2014 3910 1243*2^1265912+1 381081 L3262 2014 3911 8289*2^1265697+1 381017 L3875 2014 3912 609*2^1265279-1 380890 L1817 2013 3913 8945*2^1265105+1 380839 L3872 2014 3914 3801*2^1264748+1 380731 L3786 2014 3915 5013*2^1264728+1 380725 L3294 2014 3916 8205*2^1264708+1 380719 L3514 2014 3917 9233*2^1264561+1 380675 L1130 2014 3918 5745*2^1264513+1 380661 L3675 2014 3919 2505*2^1264470-1 380647 L1959 2013 3920 6525*2^1264263+1 380585 L1792 2014 3921 6023*2^1264241+1 380579 L3262 2014 3922 8711*2^1264061+1 380525 L3257 2014 3923 6231*2^1264049+1 380521 L2520 2014 3924 5319*2^1263971+1 380497 L1792 2014 3925 8547*2^1263915+1 380481 L1158 2014 3926 9111*2^1263843+1 380459 L3035 2014 3927 911*2^1263831+1 380454 L2812 2011 3928 733*2^1263802+1 380446 L2048 2011 3929 109988*5^544269+1 380433 p292 2011 3930 1197*2^1263698+1 380415 L2375 2011 3931 873*2^1263679-1 380409 L2257 2013 3932 1425*2^1263665-1 380405 L1134 2012 3933 2239*2^1263658+1 380403 L2517 2014 3934 3875*2^1263619+1 380391 L1745 2014 3935 481*2^1263444+1 380338 L2826 2012 3936 2191*2^1263392+1 380323 L3836 2014 3937 8649*2^1263389+1 380322 L2649 2014 3938 2325*2^1263290+1 380292 L3836 2014 3939 7543*2^1263244+1 380279 L3262 2014 3940 4991*2^1263197+1 380264 L3262 2014 3941 3954*148^175188-1 380208 p268 2012 3942 789*2^1262973+1 380196 L2805 2011 3943 3491*2^1262889+1 380172 L3835 2014 3944 1611*2^1262857+1 380162 L2327 2014 3945 957*2^1262808-1 380147 L1817 2013 3946 6375*2^1262713+1 380119 L2626 2014 3947 7221*2^1262652+1 380100 L2125 2014 3948 4455*2^1262558+1 380072 L3262 2014 3949 3843*2^1262384+1 380020 L1761 2014 3950 6625*2^1262370+1 380016 L1204 2014 3951 5739*2^1262267+1 379984 L3851 2014 3952 4651*2^1262232+1 379974 L3262 2014 3953 5965*2^1262096+1 379933 L3171 2014 3954 993*2^1262086+1 379929 L2711 2011 3955 8599*2^1262070+1 379925 L3262 2014 3956 3547*2^1261978+1 379897 L3698 2014 3957 4157*2^1261974-1 379896 L1959 2013 3958 8681*2^1261845+1 379858 L2890 2014 3959 5529*2^1261793+1 379842 L3262 2014 3960 2559*2^1261627+1 379791 L1741 2014 3961 6395*2^1261595+1 379782 L2545 2014 3962 3597*2^1261576+1 379776 L1982 2014 3963 11*2^1261478-1 379744 L163 2006 3964 7057*2^1261444+1 379737 L3262 2014 3965 7571*2^1261313+1 379697 L3856 2014 3966 7037*2^1261259+1 379681 L2866 2014 3967 6681*2^1261160+1 379651 L1344 2014 3968 1779*2^1261057+1 379620 L3430 2014 3969 6147*2^1261044+1 379616 L1158 2014 3970 1035*2^1260911-1 379576 L1828 2012 3971 48166*151^174188+1 379557 p365 2013 3972 7549*2^1260758+1 379530 L1761 2014 3973 3231*2^1260728+1 379521 L3834 2014 3974 9905*2^1260565+1 379472 L3879 2014 3975 5133*2^1260537+1 379464 L3668 2014 3976 8157*2^1260398+1 379422 L3262 2014 3977 5847*2^1260334+1 379403 L3850 2014 3978 4567*2^1260278+1 379386 L2840 2014 3979 4205*2^1260223+1 379369 L1158 2014 3980 105*2^1260218+1 379366 L1751 2011 3981 3391*2^1260200+1 379362 L2626 2014 3982 977*2^1260108-1 379334 L2257 2013 3983 1063*2^1260091-1 379329 L1828 2012 3984 717*2^1260087+1 379327 L2545 2011 (**) 3985 6555*2^1260074-1 379324 L840 2014 3986 291*2^1260056+1 379318 L2562 2012 3987 8857*2^1260018+1 379308 L1741 2014 3988 5653*2^1259954+1 379288 L1745 2014 3989 4037*2^1259918-1 379277 L1959 2013 3990 5541*2^1259891+1 379269 L1158 2014 3991 433*2^1259831-1 379250 L1817 2013 3992 68492*5^542553+1 379234 L2342 2011 3993 26*941^127533+1 379233 L1471 2012 3994 9229*2^1259754+1 379228 L3877 2014 3995 4925*2^1259671+1 379203 L3199 2014 3996 2557*2^1259640+1 379193 L1741 2014 3997 8281*2^1259564+1 379171 L2517 2014 Generalized Fermat 3998 2871*2^1259533+1 379161 L3830 2014 3999 3159*2^1259458+1 379139 L1741 2014 4000 6603*2^1259313+1 379095 L3262 2014 4001 7041*2^1259284+1 379087 L3766 2014 4002 741*2^1259168+1 379051 L2659 2011 4003 6377*2^1259159+1 379049 L3262 2014 4004 6731*2^1259115+1 379036 L2626 2014 4005 7723*2^1259100+1 379031 L1158 2014 4006 2595*2^1259083+1 379026 L3035 2014 4007 3677*2^1258923+1 378978 L2038 2014 (**) 4008 2999*2^1258905+1 378972 L3833 2014 4009 5775*2^1258855+1 378957 L3262 2014 4010 5141*2^1258761+1 378929 L2831 2014 4011 4521*2^1258753+1 378927 L1792 2014 4012 7393*2^1258710+1 378914 L2549 2014 4013 525*2^1258688+1 378906 L2811 2011 4014 9473*2^1258653+1 378897 L3105 2014 4015 6883*2^1258580+1 378875 L3854 2014 4016 25*2^1258562+1 378867 g279 2004 Generalized Fermat (**) 4017 8765*2^1258495+1 378849 L2549 2014 4018 5627*2^1258483+1 378845 L3848 2014 4019 781*2^1258420+1 378826 L2085 2011 4020 1831*2^1258364+1 378809 L1204 2014 4021 6993*2^1258269+1 378781 L3743 2014 4022 9973*2^1258180+1 378754 L3671 2014 4023 4005*2^1258162-1 378749 L1959 2013 4024 571*2^1258052+1 378715 L1149 2011 4025 917*2^1258011+1 378703 L2702 2011 4026 9339*2^1257938+1 378682 L3262 2014 4027 1219*2^1257913-1 378673 L1828 2012 4028 883*2^1257858+1 378656 L2085 2011 4029 321*2^1257859+1 378656 L2038 2012 4030 5309*2^1257831+1 378649 L3810 2014 4031 2084259*2^1257787-1 378638 L466 2008 4032 1089904*(2^1257787-1)+1 378638 p373 2014 4033 987537*2^1257787+1 378638 L466 2011 4034 280680*(2^1257787-1)+1 378638 p373 2014 (**) 4035 26869*2^1257787-1 378637 L466 2007 4036 2^1257787-1 378632 SG 1996 Mersenne 34 (**) 4037 9885*2^1257719+1 378616 L1792 2014 4038 9717*2^1257694+1 378608 L3262 2014 4039 5765*2^1257681+1 378604 L3430 2014 4040 8787*2^1257644+1 378593 L2520 2014 4041 7663*2^1257562+1 378568 L3262 2014 4042 291*2^1257405-1 378520 L2338 2012 4043 2661*2^1257361+1 378507 L2675 2014 4044 9965*2^1257335+1 378500 L2038 2014 4045 3075*2^1257333+1 378499 L3813 2014 4046 3657*2^1257314+1 378493 L3514 2014 4047 5377*2^1257308+1 378492 L3797 2014 4048 6519*2^1257299+1 378489 L2038 2014 4049 49*2^1257295-1 378486 L217 2008 4050 1621*2^1257140+1 378441 L2038 2014 4051 6201*2^1257068+1 378419 L667 2008 4052 8361*2^1257051+1 378414 L3137 2014 4053 555*2^1257047+1 378412 L2716 2011 4054 119*2^1256952-1 378383 L2338 2011 4055 3763*2^1256864+1 378358 L1204 2014 4056 983*2^1256756-1 378325 L1817 2013 4057 2681*2^1256743+1 378321 L1741 2014 4058 2609*2^1256605+1 378280 L1344 2014 4059 1491*2^1256564+1 378267 L3713 2014 4060 6647*2^1256551+1 378264 L3262 2014 4061 1485*2^1256516+1 378253 L1134 2012 4062 793*2^1256511-1 378251 L1817 2013 4063 2361*2^1256459+1 378236 L2520 2014 4064 9907*2^1256314+1 378193 L3262 2014 4065 8193*2^1256262+1 378177 L3262 2014 4066 4151*2^1256259+1 378176 L1745 2014 4067 3159*2^1256259+1 378176 L3105 2014 4068 8745*2^1256229+1 378167 L3854 2014 4069 6615*2^1256156+1 378145 L3262 2014 4070 89725*2^1256151-1 378145 p260 2012 Generalized Woodall (**) 4071 9919*2^1256054+1 378114 L1792 2014 4072 2217*2^1255980+1 378091 L3763 2014 4073 341*2^1255881+1 378061 L2824 2012 4074 693*2^1255879-1 378061 L1817 2013 4075 7247*2^1255827+1 378046 L1158 2014 4076 6187*2^1255796+1 378037 L1158 2014 4077 579*2^1255762+1 378025 L2810 2011 4078 2163*2^1255556+1 377964 L2873 2014 4079 4097*2^1255462-1 377936 L1959 2013 4080 (935695*2^627694+3)^2+(1123581*2^313839)^2 377922 x29 2012 (**) 4081 4065*2^1255375+1 377910 L2626 2014 4082 4271*2^1255289+1 377884 L3262 2014 4083 691*2^1255260+1 377874 L2820 2011 4084 5031*2^1255249+1 377872 L3786 2014 4085 502051!7+1 377722 p3 2012 Multifactorial 4086 1289*2^1254635+1 377686 L2967 2014 4087 6555*2^1254508-1 377649 L3887 2014 4088 3221*2^1254483+1 377641 L3763 2014 4089 7149*2^1254463+1 377635 L3713 2014 4090 5427*2^1254444+1 377630 L3262 2014 4091 6945*2^1254274+1 377578 L3262 2014 (**) 4092 6045*2^1254150+1 377541 L1492 2014 4093 81*2^1254155+1 377541 gt 2007 4094 815*2^1253904-1 377466 L2257 2013 4095 27*2^1253870-1 377454 L65 2008 4096 3249*2^1253758+1 377423 L3430 2014 Generalized Fermat 4097 2847*2^1253644+1 377388 L1502 2014 4098 9441*2^1253589+1 377372 L3262 2014 4099 8923*2^1253430+1 377324 L3262 2014 4100 4533*2^1253153+1 377241 L1761 2014 4101 745*2^1253108+1 377226 L2522 2011 4102 2563*2^1253084+1 377220 L2714 2014 4103 6659*2^1252899+1 377165 L2520 2014 4104 1041*2^1252387-1 377010 L1828 2012 4105 5285*2^1252317+1 376989 L3262 2014 4106 9481*2^1252236+1 376965 L3262 2014 4107 5035*2^1252208+1 376956 L2062 2014 4108 9359*2^1252051+1 376909 L3262 2014 4109 5427*2^1252036+1 376905 L3743 2014 4110 2413*2^1251948+1 376878 L2038 2014 4111 7695*2^1251827+1 376842 L3262 2014 4112 9927*2^1251727+1 376812 L1741 2014 4113 9915*2^1251675+1 376796 L3786 2014 4114 877*2^1251678+1 376796 L2655 2011 4115 8511*2^1251664+1 376793 L3262 2014 4116 585*2^1251530+1 376751 L2809 2011 4117 7795*2^1251344+1 376696 L2520 2014 4118 1395*2^1251292-1 376680 L1828 2012 4119 2319*2^1251235+1 376663 L3824 2014 4120 3773*2^1251125+1 376630 L1741 2014 4121 80857169*2^1251076-1 376620 L10 2004 4122 2711*2^1250775+1 376525 L1741 2014 4123 1123*2^1250755-1 376518 L1828 2012 4124 7985*2^1250517+1 376448 L1492 2014 (**) 4125 1961*2^1250515+1 376446 L1745 2014 4126 3835*2^1250486+1 376438 L3763 2014 4127 8055*2^1250479+1 376436 L2327 2014 4128 7087*2^1250288+1 376379 L2520 2014 4129 7477*2^1250284+1 376377 L2626 2014 4130 5547*2^1250222+1 376359 L2520 2014 4131 1749*2^1250174+1 376344 L3763 2014 4132 181*2^1250169-1 376341 L2074 2011 4133 9081*2^1250127+1 376330 L3294 2014 4134 6919*2^1250118+1 376327 L2875 2014 4135 775*2^1250106+1 376323 L2549 2011 4136 57023*6^483561-1 376289 p258 2009 4137 871*2^1249947-1 376275 L2257 2013 4138 4747*2^1249792+1 376229 L3035 2014 4139 6819*2^1249746+1 376215 L3820 2014 4140 9147*2^1249714+1 376206 L1456 2014 4141 8405*2^1249683+1 376196 L1741 2014 4142 549868^65536+1 376194 g295 2003 Generalized Fermat 4143 3295*2^1249632+1 376181 L3035 2014 4144 1043*2^1249633+1 376181 L2540 2011 4145 9141*2^1249535+1 376152 L3750 2014 4146 2173*2^1249518+1 376146 L2126 2014 4147 2039*2^1249481+1 376135 L3262 2014 4148 5863*2^1249450+1 376126 L3262 2014 4149 207*2^1249252+1 376065 L2906 2012 4150 201*2^1249030-1 375998 L1862 2011 4151 8481*2^1248980+1 375985 L3262 2014 4152 7519*2^1248978+1 375984 L3262 2014 4153 2475*2^1248927+1 375968 L3294 2014 4154 3525*2^1248844+1 375944 L1689 2014 4155 6969*2^1248837+1 375942 L3588 2014 4156 6675*2^1248833+1 375941 L1753 2014 4157 6413*2^1248785+1 375926 L2038 2014 4158 9801*2^1248728+1 375909 L1456 2014 Generalized Fermat 4159 544118^65536+1 375895 g295 2002 Generalized Fermat 4160 5105*2^1248407+1 375812 L3588 2014 4161 6487*2^1248334+1 375790 L3262 2014 4162 7447*2^1248322+1 375787 L1733 2014 4163 7245*2^1248284-1 375775 L2074 2014 4164 5249*2^1248251+1 375765 L2048 2014 4165 9431*2^1248235+1 375761 L3476 2014 4166 6583*2^1248096+1 375719 L2064 2014 4167 821*2^1248033+1 375699 L2808 2011 4168 391*2^1247959-1 375676 L644 2010 4169 43902*31^251859-1 375618 L2054 2011 4170 4501*2^1247696+1 375598 L3035 2014 4171 8163*2^1247670+1 375591 L2583 2014 4172 3555*2^1247657+1 375586 L3793 2014 4173 2955*2^1247530+1 375548 L3588 2014 4174 1217*2^1247387+1 375504 L1741 2014 4175 9395*2^1247361+1 375498 L1186 2014 4176 3817*2^1247292+1 375476 L3262 2014 4177 4091*2^1247289+1 375476 L1546 2014 4178 7613*2^1247249+1 375464 L3262 2014 4179 7813*2^1247000+1 375389 L3262 2014 4180 5289*2^1246925+1 375366 L3262 2014 4181 6171*2^1246721+1 375305 L2038 2014 4182 1269*2^1246504-1 375239 L1828 2012 4183 3865*2^1246460+1 375226 L3713 2014 4184 9255*2^1246398+1 375208 L2873 2014 4185 5083*2^1246238+1 375159 L3262 2014 4186 9045*2^1246134+1 375128 L3825 2014 4187 7929*2^1246095+1 375116 L2279 2014 4188 7947*2^1246023+1 375095 L1990 2014 4189 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) (**) 4190 2921*2^1246009+1 375090 L2790 2014 4191 4345*2^1245994+1 375086 L3262 2014 4192 6741*2^1245924+1 375065 L3262 2014 4193 2305*2^1245910+1 375060 L3699 2014 4194 2053*12^347512-1 375032 p255 2012 4195 979*2^1245698+1 374996 L2826 2011 4196 5017*2^1245678+1 374991 L3262 2014 4197 9679*2^1245666+1 374987 L3727 2014 4198 6535*2^1245590+1 374964 L3790 2014 4199 4117*2^1245557-1 374954 L1959 2013 4200 9673*2^1245548+1 374952 L1204 2014 4201 22*3^785831-1 374939 L3326 2012 4202 6177*2^1245440+1 374919 L3791 2014 4203 5445*2^1245349-1 374892 L2484 2014 4204 3009*2^1245334+1 374887 L1774 2014 4205 3141*2^1245168+1 374837 L3262 2014 4206 153*2^1245154-1 374831 L1959 2011 4207 1061*2^1245114-1 374820 L1828 2012 4208 8993*2^1245093+1 374815 L1741 2014 4209 5175*2^1245070+1 374808 L3262 2014 4210 4197*2^1245038-1 374798 L1959 2013 4211 5799*2^1245023+1 374794 L1990 2014 4212 3053*2^1244925+1 374764 L3262 2014 4213 7753*2^1244902+1 374757 L3588 2014 4214 4019*2^1244799+1 374726 L3262 2014 4215 8175*2^1244756+1 374713 L2583 2014 4216 165*2^1244739+1 374706 L1562 2012 (**) 4217 9791*2^1244733+1 374706 L2279 2014 4218 9089*2^1244733+1 374706 L3814 2014 4219 9297*2^1244646+1 374680 L3158 2014 4220 375*2^1244550+1 374650 L1158 2012 4221 2991*2^1244532+1 374645 L1753 2014 4222 3625*2^1244512+1 374640 L2322 2014 4223 1209*2^1244507-1 374638 L1828 2012 4224 3207*2^1244504+1 374637 L3588 2014 4225 9709*2^1244394+1 374604 L3760 2014 4226 15*2^1244377+1 374596 g279 2006 (**) 4227 1167*2^1244321-1 374582 L1828 2012 4228 2469*2^1244310+1 374579 L3668 2014 4229 8617*2^1244202+1 374547 L1733 2014 4230 8479*2^1244154+1 374532 L3588 2014 4231 178602*5^535806-1 374518 L2777 2012 Generalized Woodall (**) 4232 2965*2^1244104+1 374517 L2117 2014 4233 169*2^1243903-1 374455 L282 2010 4234 7*362^146341-1 374445 L1471 2011 4235 1835*2^1243831+1 374434 L3668 2014 4236 4715*2^1243711+1 374398 L3768 2014 4237 6107*2^1243647+1 374379 L3766 2014 4238 8433*2^1243549+1 374350 L1204 2014 4239 1017*2^1243364+1 374293 L2807 2011 4240 423*2^1243214-1 374248 L1817 2013 4241 1245*2^1243197-1 374243 L1828 2012 4242 825*2^1243193+1 374242 L2730 2011 (**) 4243 1443*2^1243128+1 374222 L3588 2014 4244 3031*2^1243024+1 374191 L3766 2014 4245 9675*2^1242970+1 374176 L3698 2014 4246 5499*2^1242938+1 374166 L2520 2014 4247 1041*2^1242900+1 374154 L2413 2011 4248 8169*2^1242691+1 374092 L3760 2014 4249 9201*2^1242669+1 374085 L1204 2014 4250 139*2^1242661-1 374081 L2074 2012 4251 257708*5^535176-1 374078 p196 2007 4252 1415*2^1242423+1 374010 L2413 2014 4253 8729*2^1242411+1 374007 L3588 2014 4254 7649*2^1242315+1 373978 L3262 2014 4255 9123*2^1242288+1 373970 L3262 2014 4256 119*2^1242207+1 373944 L1751 2011 (**) 4257 9867*2^1242011+1 373887 L3262 2014 4258 4449*2^1241866+1 373843 L1733 2014 4259 9239*2^1241735+1 373804 L3262 2014 4260 123*2^1241690-1 373789 L1959 2011 4261 7659*2^1241665+1 373783 L3262 2014 4262 6771*2^1241653+1 373779 L3262 2014 4263 4329*2^1241649+1 373778 L1741 2014 4264 707*2^1241499+1 373732 L2806 2011 4265 2105*2^1241419+1 373708 L3262 2014 4266 9549*2^1241411+1 373706 L3262 2014 4267 5513*2^1241337+1 373684 L3668 2014 4268 673*2^1241262+1 373660 L2805 2011 (**) 4269 5345*2^1241241+1 373655 L2413 2014 4270 285*2^1241173+1 373633 L2085 2012 4271 3037*2^1241074+1 373604 L2531 2014 4272 1077*2^1240976+1 373575 L2085 2011 4273 4753*2^1240894+1 373550 L1741 2014 4274 9663*2^1240757+1 373510 L3806 2014 4275 9079*2^1240750+1 373507 L1160 2014 4276 27029*2^1240648-1 373477 L2055 2011 4277 7839*2^1240646+1 373476 L3262 2014 4278 8907*2^1240578+1 373456 L1204 2014 4279 4715*2^1240543+1 373445 L3514 2014 4280 369*2^1240510+1 373434 L2905 2012 4281 3341*2^1240459+1 373419 L2038 2014 4282 8415*2^1240437+1 373413 L2117 2014 4283 5265*2^1240387+1 373398 L3262 2014 4284 2413*2^1240386+1 373397 L2413 2014 4285 6157*2^1240310+1 373375 L3262 2014 4286 8789*2^1240255+1 373358 L3262 2014 4287 159*2^1240229-1 373349 L1959 2011 4288 21*2^1240067+1 373299 g279 2004 (**) 4289 425*2^1240016-1 373285 L1817 2013 4290 7797*2^1239955+1 373268 L1492 2014 4291 8579*10^373260-1 373264 p265 2010 4292 1973*2^1239877+1 373244 L3786 2014 4293 315*2^1239735+1 373200 L2907 2012 4294 8577*2^1239675+1 373184 L3199 2014 4295 1345*2^1239661-1 373179 L1828 2012 4296 3303*2^1239656+1 373178 L3783 2014 4297 6783*2^1239565+1 373151 L3895 2014 4298 8541*2^1239529+1 373140 L3262 2014 4299 435*2^1239504+1 373131 L2805 2012 4300 9105*2^1239490+1 373128 L1741 2014 4301 2709*2^1239449+1 373115 L3262 2014 4302 6225*2^1239157+1 373028 L3262 2014 4303 9039*2^1239126+1 373019 L2981 2014 4304 2172*117^180355+1 373011 p376 2014 4305 1357*2^1238926+1 372958 L3780 2014 4306 2783*2^1238749+1 372905 L3781 2014 4307 2205*2^1238743+1 372903 L3262 2014 4308 1775*2^1238739+1 372901 L3262 2014 4309 2115*2^1238672+1 372881 L3262 2014 4310 7979*2^1238639+1 372872 L3423 2014 4311 4455*2^1238519+1 372836 L1733 2014 4312 4053*2^1238193+1 372737 L1733 2014 4313 3997*2^1238180+1 372733 L2413 2014 4314 7063*2^1238138+1 372721 L3699 2014 4315 3203*2^1238045+1 372693 L2981 2014 4316 5187*2^1238008+1 372682 L3262 2014 4317 4497*2^1237934+1 372659 L1741 2014 4318 2595*2^1237917+1 372654 L3775 2014 4319 4027*2^1237866+1 372639 L1741 2014 4320 5439*2^1237786+1 372615 L3262 2014 4321 7341*2^1237761+1 372608 L1137 2014 4322 4957*2^1237734+1 372599 L3262 2014 4323 3415*2^1237724+1 372596 L1741 2014 4324 1147*2^1237642+1 372571 L2659 2011 4325 1575*2^1237448+1 372513 L2520 2014 4326 4075*2^1237398+1 372498 L2038 2014 4327 6269*2^1237377+1 372492 L1741 2014 4328 6207*2^1237356+1 372486 L1741 2014 4329 7297*2^1237310+1 372472 L3262 2014 4330 7165*2^1237210+1 372442 L3699 2014 4331 9753*2^1237132+1 372418 L3262 2014 4332 8325*2^1236968+1 372369 L3262 2014 4333 5115*2^1236900+1 372348 L1741 2014 4334 7217*2^1236831+1 372328 L1745 2014 4335 1113*2^1236797+1 372317 L2829 2011 4336 5711*2^1236551+1 372243 L2823 2014 4337 3401*2^1236517+1 372233 L2520 2014 4338 3957*2^1236514+1 372232 L2038 2014 4339 8171*2^1236507+1 372230 L2626 2014 4340 7617*2^1236482+1 372223 L3171 2014 4341 9257*2^1236431+1 372207 L3812 2014 4342 7345*2^1236280+1 372162 L3048 2014 4343 7055*2^1236229+1 372146 L3262 2014 4344 8819*2^1236025+1 372085 L3588 2014 4345 6373*2^1236006+1 372079 L2520 2014 4346 4635*2^1235976+1 372070 L3699 2014 4347 5673*2^1235958+1 372065 L2279 2014 4348 8159*2^1235875+1 372040 L2048 2014 4349 7081*2^1235808+1 372020 L2866 2014 4350 9309*2^1235626+1 371965 L2117 2014 4351 3515*2^1235623+1 371964 L3206 2014 4352 8715*2^1235606+1 371959 L3760 2014 4353 6259*2^1235586+1 371953 L3773 2014 4354 8837*2^1235559+1 371945 L1753 2014 4355 1677*2^1235543+1 371939 L3158 2014 4356 6461*2^1235539+1 371939 L2532 2014 4357 165*2^1235490-1 371922 L2101 2011 4358 2737*2^1235408+1 371899 L2549 2014 4359 43*2^1235298+1 371864 g279 2006 (**) 4360 1707*2^1235207+1 371838 L3768 2014 4361 6481*2^1235200+1 371837 L1741 2014 4362 6171*2^1235161+1 371825 L3766 2014 4363 577*2^1235058+1 371793 L2804 2011 4364 615*2^1235039-1 371787 L1978 2012 4365 259738*3^779214+1 371785 L2777 2011 Generalized Cullen (**) 4366 8495*2^1234841+1 371729 L3262 2014 4367 185*2^1234730-1 371694 L1959 2011 4368 19861029*2^1234572-1 371651 L895 2012 4369 6009*2^1234511+1 371629 L3671 2014 4370 4163*2^1234360-1 371584 L1959 2013 4371 8229*2^1234302+1 371566 L3588 2014 4372 2979*2^1234303+1 371566 L2549 2014 4373 7601*2^1234057+1 371493 L2826 2014 4374 595*2^1234025-1 371482 L1817 2013 4375 2129*2^1233779+1 371408 L3412 2013 4376 13483*2^1233619-1 371361 L2055 2011 4377 705*2^1233563-1 371343 L2257 2012 4378 6147*2^1233486+1 371321 L2549 2014 4379 531*2^1233440+1 371306 L2803 2011 Divides GF(1233439,5) 4380 1677*2^1233336+1 371275 L3548 2013 4381 1785*2^1233319+1 371270 L1733 2013 4382 145*2^1233286+1 371259 L1751 2011 4383 1045*2^1233270+1 371255 L2659 2011 4384 9343*2^1233256+1 371252 L3588 2014 4385 2875*2^1233256+1 371251 L2520 2013 4386 2*170^166428-1 371210 L2054 2011 4387 1935*2^1233015+1 371178 L3548 2013 4388 9727*2^1232994+1 371173 L3760 2014 4389 9241*2^1232956+1 371161 L2873 2014 4390 7385*2^1232891+1 371142 L3294 2014 4391 5007*2^1232886+1 371140 L1741 2014 4392 7011*2^1232784+1 371109 L3430 2014 4393 9843*2^1232722+1 371091 L3262 2014 4394 4733*2^1232689+1 371081 L3168 2014 4395 1067*2^1232654-1 371069 L1828 2012 4396 4289*2^1232571+1 371045 L2520 2014 4397 711*2^1232535+1 371033 L1303 2011 4398 5643*2^1232518+1 371029 L3034 2014 4399 9621*2^1232501+1 371024 L1741 2014 4400 569*2^1232424-1 371000 L1817 2013 4401 987*2^1232387+1 370989 L2619 2011 4402 9923*2^1232333+1 370974 L2327 2014 4403 5849*2^1232295+1 370962 L3423 2014 4404 2115*2^1232294+1 370961 L3713 2013 4405 8795*2^1232255+1 370950 L3262 2014 4406 3*2^1232255-1 370947 L30 2004 4407 6899*2^1232171+1 370925 L2981 2014 4408 1157*2^1231906-1 370844 L1828 2012 4409 8143*2^1231664+1 370772 L3588 2014 4410 51*2^1231665-1 370770 L384 2010 4411 957*2^1231656+1 370769 L1741 2011 4412 2475*2^1231584+1 370748 L3548 2013 4413 5871*2^1231561+1 370741 L2549 2014 4414 8675*2^1231443+1 370706 L3262 2014 4415 5763*2^1231376+1 370685 L1741 2014 4416 1357*2^1231324+1 370669 L3548 2013 4417 4251*2^1231307+1 370664 L3294 2014 4418 7761*2^1231228+1 370641 L3294 2014 4419 3411*2^1231211+1 370635 L1741 2013 4420 1119*2^1231192-1 370629 L1828 2012 4421 2421*2^1231103+1 370603 L3548 2013 4422 8581*2^1231084+1 370598 L3262 2014 4423 1395*2^1230933+1 370551 L3262 2013 4424 9325*2^1230850+1 370527 L3588 2014 4425 2625*2^1230805+1 370513 L1139 2013 4426 9585*2^1230790+1 370509 L3810 2014 4427 1979*2^1230765+1 370501 L2837 2013 4428 4125*2^1230651+1 370467 L3262 2014 4429 4223*2^1230633+1 370462 L1741 2014 4430 1587*2^1230628+1 370460 L3548 2013 4431 3179*2^1230431+1 370401 L3548 2013 4432 3399*2^1230309+1 370364 L3548 2013 4433 7863*2^1230300+1 370362 L3294 2014 4434 8823*2^1230161+1 370320 L3808 2014 4435 3411*2^1230152+1 370317 L3726 2013 4436 1129*2^1230141-1 370313 L1828 2012 4437 7817*2^1229839+1 370223 L2322 2014 4438 7813*2^1229788+1 370207 L2981 2014 4439 2293*2^1229788+1 370207 L2831 2013 4440 1075*2^1229708+1 370183 L2522 2011 4441 8153*2^1229665+1 370170 L3131 2014 4442 15*2^1229600+1 370148 g279 2006 (**) 4443 19581121*2^1229561-1 370143 p49 2008 4444 4303*2^1229412+1 370094 L1745 2014 4445 513*2^1229391-1 370087 L2047 2013 4446 4603*2^1229378+1 370084 L2549 2014 4447 6351*2^1229319+1 370066 L3755 2014 4448 879*2^1229303-1 370061 L1817 2012 4449 7481*2^1229203+1 370031 L3755 2014 4450 5965*2^1229186+1 370026 L1745 2014 4451 6025*2^1229148+1 370015 L3695 2014 4452 9677*2^1229147+1 370015 L2038 2014 4453 8461*2^1229080+1 369994 L3262 2014 4454 9215*2^1228901+1 369941 L2126 2014 4455 9207*2^1228867+1 369930 L3813 2014 4456 7119*2^1228866+1 369930 L3658 2014 4457 3735*2^1228827+1 369918 L2070 2013 4458 9627*2^1228806+1 369912 L1823 2014 4459 6581*2^1228805+1 369911 L3763 2014 4460 440846^65536+1 369904 GC1 2002 Generalized Fermat 4461 349*2^1228715-1 369883 L579 2010 4462 1315*2^1228613-1 369853 L1828 2012 4463 613*2^1228474+1 369811 L2659 2011 4464 631*2^1228421-1 369795 L2257 2012 4465 8101*2^1228384+1 369785 L3262 2014 4466 44*383^143148-1 369782 L2012 2014 4467 1923*2^1228357+1 369776 L2719 2013 4468 7475*2^1228307+1 369762 L376 2014 4469 889*2^1228285-1 369754 L2257 2012 4470 9701*2^1228243+1 369742 L3588 2014 4471 9999998*10^369705-1 369712 L1958 2014 Near-repdigit 4472 6895*2^1228014+1 369673 L1477 2014 4473 3555*2^1227976+1 369662 L3548 2013 4474 9429*2^1227926+1 369647 L3806 2014 4475 4099*2^1227794+1 369607 L3755 2014 4476 1629*2^1227739+1 369590 L3548 2013 4477 1159*2^1227650+1 369563 L1935 2011 4478 4931*2^1227525+1 369526 L3755 2014 4479 6639*2^1227507+1 369521 L3760 2014 4480 1307*2^1227482-1 369513 L1828 2012 4481 593*2^1227476-1 369510 L1817 2013 4482 3655*2^1227466+1 369508 L2809 2013 4483 4785*2^1227416+1 369493 L3755 2014 4484 1289*2^1227403+1 369489 L1741 2013 4485 5863*2^1227386+1 369484 L1741 2014 4486 2965*2^1227314+1 369462 L2413 2013 4487 9167*2^1227311+1 369462 L2981 2014 4488 757*2^1227234+1 369438 L1210 2011 4489 1559*2^1227229+1 369436 L3548 2013 4490 5019*2^1227205+1 369430 L3755 2014 4491 5565*2^1227099+1 369398 L3759 2014 4492 6213*2^1226950+1 369353 L1204 2014 4493 1085*2^1226897+1 369336 L2655 2011 4494 573*2^1226854-1 369323 L1817 2013 4495 2625*2^1226803+1 369308 L1745 2013 4496 9411*2^1226739+1 369290 L1741 2014 4497 5579*2^1226737+1 369289 L2520 2014 4498 5233*2^1226700+1 369278 L3514 2014 4499 9519*2^1226566+1 369238 L3262 2014 4500 919*2^1226562+1 369235 L2797 2011 4501 5609*2^1226531+1 369227 L3262 2014 4502 4257*2^1226423+1 369194 L2886 2014 4503 7603*2^1226328+1 369166 L2549 2014 4504 2145*2^1226291-1 369154 L1862 2013 4505 287*2^1226144-1 369109 p279 2010 4506 6323*2^1226093+1 369095 L1741 2014 4507 6555*2^1225770-1 368998 L2484 2014 4508 8185*2^1225738+1 368988 L2279 2014 4509 9485*2^1225669+1 368968 L3262 2014 4510 4799*2^1225665+1 368966 L3755 2014 4511 8589*2^1225637+1 368958 L3262 2014 4512 1701*2^1225611+1 368949 L3548 2013 4513 5295*2^1225536+1 368927 L3262 2014 4514 6825*2^1225488+1 368913 L3755 2014 4515 5139*2^1225425+1 368894 L3758 2014 4516 86*123^176510-1 368892 L1471 2012 4517 9221*2^1225369+1 368877 L3588 2014 4518 8593*2^1225272+1 368848 L3262 2014 4519 3275*2^1225145+1 368809 L1186 2013 4520 123*2^1225115-1 368799 L1959 2011 4521 6403*2^1225086+1 368792 L3753 2014 4522 5649*2^1225083+1 368791 L3757 2014 4523 4421*2^1225063+1 368785 L2626 2014 4524 6357*2^1224964+1 368755 L3760 2014 4525 3499*2^1224890+1 368733 L1745 2013 4526 2375*2^1224889+1 368732 L3548 2013 4527 8331405*2^1224804-1 368710 L260 2010 4528 5925*2^1224804+1 368707 L1130 2014 4529 3471*2^1224763+1 368694 L3548 2013 Divides GF(1224758,6) 4530 6851*2^1224703+1 368677 L1741 2014 4531 4185*2^1224663-1 368664 L1959 2013 4532 5051*2^1224601+1 368646 L3262 2013 4533 2163*2^1224400+1 368585 L3035 2013 4534 9537*2^1224332+1 368565 L3803 2014 4535 4005*2^1224094+1 368493 L3744 2013 4536 179*2^1224019+1 368469 L2835 2012 4537 1023*2^1223814+1 368408 L2117 2011 4538 515*2^1223805+1 368405 L2322 2011 4539 9265*2^1223786+1 368401 L1130 2014 4540 9645*2^1223623+1 368352 L3760 2014 4541 7893*2^1223613+1 368349 L3755 2013 4542 849*2^1223571-1 368335 L1815 2012 4543 6517*2^1223520+1 368321 L3234 2013 4544 9427*2^1223460+1 368303 L1204 2014 4545 9803*2^1223453+1 368301 L3545 2014 4546 1653*2^1223260+1 368242 L3262 2013 4547 3243*2^1223024+1 368171 L3712 2013 4548 3441*2^1222996+1 368163 L3262 2013 4549 4603*2^1222908+1 368136 L3668 2013 4550 3907*2^1222828+1 368112 L3713 2013 4551 1929*2^1222751+1 368089 L3548 2013 4552 8733*2^1222624+1 368051 L3262 2014 4553 1027*2^1222565-1 368032 L1828 2012 4554 4169*2^1222495+1 368012 L2100 2013 4555 3729*2^1222462+1 368002 L3548 2013 4556 4103*2^1222417+1 367988 L2413 2013 4557 141*2^1222421+1 367988 L1751 2011 (**) 4558 2955*2^1222267+1 367943 L1204 2013 4559 6915*2^1222132+1 367903 L2549 2013 4560 7209*2^1221977+1 367856 L2048 2014 4561 3129*2^1221955+1 367849 L3262 2013 4562 1027*2^1221942+1 367845 L2802 2011 4563 7277*2^1221923+1 367840 L3753 2013 4564 4135*2^1221887-1 367829 L1959 2013 4565 4477*2^1221814+1 367807 L3698 2013 4566 4107*2^1221754+1 367789 L2532 2013 4567 8433*2^1221721+1 367779 L3262 2014 4568 8483*2^1221641+1 367755 L1741 2014 4569 4175*2^1221640-1 367754 L1959 2013 4570 5439*2^1221406+1 367684 L2840 2014 4571 2205*2^1221369+1 367673 L3548 2013 4572 4249*2^1221214+1 367626 L3750 2013 4573 351*2^1221009+1 367563 L2861 2012 4574 8071*2^1220896+1 367531 L2626 2014 4575 6501*2^1220856+1 367519 L3171 2013 4576 6461*2^1220717+1 367477 L1745 2013 4577 4113*2^1220636+1 367452 L2066 2013 4578 7261*2^1220572+1 367433 L2413 2013 4579 9133*2^1220526+1 367419 L3262 2014 4580 5473*2^1220524+1 367419 L2594 2013 4581 2893*2^1220512+1 367415 L3262 2013 4582 9847*2^1220430+1 367391 L2823 2014 4583 107*2^1220391+1 367377 L2873 2012 4584 1183*2^1220323-1 367357 L1828 2012 4585 128552*5^525537+1 367340 p292 2010 4586 429*2^1220185+1 367315 L1158 2012 4587 5139*2^1220067+1 367281 L3586 2013 4588 1541*2^1220067+1 367280 L3709 2013 4589 1395*2^1220066+1 367280 L3548 2013 4590 3527*2^1220035+1 367271 L3548 2013 4591 913*2^1220010+1 367263 L2801 2011 4592 5961*2^1220007+1 367263 L2626 2013 4593 5481*2^1219949+1 367245 L3727 2013 4594 8619*2^1219829+1 367210 L3262 2014 4595 8897*2^1219795+1 367199 L3262 2014 4596 79916753563828279896266938611356192810163128144777193765*2^1219621+1 367199 p342 2012 4597 6165*2^1219740-1 367183 L1828 2014 4598 2725*2^1219638+1 367152 L3548 2013 4599 1277*2^1219524-1 367117 L1828 2012 4600 827*2^1219466-1 367099 L1815 2012 4601 6969*2^1219439+1 367092 L3719 2013 4602 183*2^1219415-1 367083 L2055 2011 4603 7799*2^1219387+1 367076 L2413 2013 4604 177482*117^177482+1 367072 g407 2008 Generalized Cullen 4605 583*2^1219350+1 367064 L2800 2011 4606 2085*2^1219265+1 367039 L3548 2013 4607 4083*2^1219134-1 367000 L1959 2013 4608 1305*2^1219127-1 366997 L1828 2012 4609 7789*2^1219102+1 366991 L2413 2013 4610 3747*2^1219099+1 366989 L1741 2013 4611 4931*2^1219095+1 366988 L2520 2013 4612 1403*2^1219065+1 366979 L3548 2013 4613 122*18^292318+1 366941 p231 2009 4614 8303*2^1218925+1 366937 L3262 2014 4615 2573*2^1218857+1 366916 L3262 2013 4616 3579*2^1218849+1 366914 L3271 2013 4617 8049*2^1218758+1 366887 L1186 2014 4618 4767*2^1218758+1 366887 L3743 2013 4619 7083*2^1218653+1 366855 L3752 2013 4620 9885*2^1218599+1 366839 L3588 2014 4621 621*2^1218520+1 366814 L2085 2011 4622 315*2^1218433+1 366788 L1568 2011 4623 3005*2^1218417+1 366784 L2840 2013 4624 8977*2^1218384+1 366775 L3797 2014 4625 8969*2^1218335+1 366760 L3262 2014 4626 174*1021^121880-1 366743 L2054 2011 4627 6687*2^1218239+1 366731 L1741 2013 4628 347*2^1218211+1 366721 L2085 2012 4629 1401*2^1218207+1 366720 L3548 2013 4630 3899*2^1218163+1 366708 L2413 2013 4631 4179*2^1218144-1 366702 L1959 2013 4632 5441*2^1218025+1 366666 L3748 2013 4633 1599*2^1217874+1 366620 L3548 2013 4634 7847*2^1217855+1 366615 L3271 2013 4635 6759*2^1217767+1 366589 L3262 2013 4636 8281*2^1217616+1 366543 L2521 2014 Generalized Fermat 4637 3371*2^1217403+1 366479 L3548 2013 4638 3177*2^1217314+1 366452 L3548 2013 4639 1515*2^1217300+1 366447 L3548 2013 4640 4325*2^1217149+1 366402 L3131 2014 4641 9375*2^1217053+1 366374 L2125 2014 4642 6495*2^1216904+1 366329 L3742 2013 4643 9057*2^1216739+1 366279 L3262 2014 4644 9375*2^1216722+1 366274 L2823 2014 4645 8463*2^1216481+1 366202 L3262 2014 4646 997*2^1216484+1 366202 L2539 2011 4647 8249*2^1216389+1 366174 L3760 2014 4648 6743*2^1216377+1 366170 L1745 2013 4649 2125*2^1216360+1 366165 L3262 2013 4650 2671*2^1216356+1 366164 L1741 2013 4651 7905*2^1216342+1 366160 L3673 2013 4652 8049*2^1216331+1 366157 L3588 2014 4653 8795*2^1216257+1 366134 L2066 2014 4654 2061*2^1216253-1 366132 L840 2013 4655 563*2^1216134-1 366096 L1817 2013 4656 1363*2^1216078+1 366080 L3695 2013 4657 553*2^1216046+1 366070 L2413 2011 4658 9581*2^1215819+1 366002 L2125 2014 4659 6165*2^1215466+1 365896 L3262 2013 4660 1215*2^1215357+1 365862 L3548 2013 4661 153*2^1215327-1 365853 L2055 2011 4662 843301#-1 365851 p302 2010 Primorial (**) 4663 3235*2^1215236+1 365826 L1379 2013 4664 8047*2^1215234+1 365826 L3262 2014 4665 1151*2^1215135+1 365796 L2779 2011 4666 1305*2^1215064-1 365774 L1828 2012 4667 8173*2^1215036+1 365767 L3798 2014 4668 8457*2^1214776+1 365688 L1456 2014 4669 4375*2^1214406+1 365577 L1761 2013 4670 6321*2^1214224+1 365522 L3171 2013 4671 3731*2^1214219+1 365520 L3548 2013 4672 3579*2^1214206+1 365516 L1745 2013 4673 1367*2^1214091+1 365481 L3548 2013 4674 9237*2^1214046+1 365469 L2125 2014 4675 143*2^1214022-1 365460 L1828 2012 4676 153*2^1214002+1 365454 L1751 2011 4677 9555*2^1213981+1 365449 L3790 2014 4678 9541*2^1213964+1 365444 L2790 2014 4679 771*2^1213789-1 365390 L1815 2012 4680 8477*2^1213783+1 365390 L1745 2014 4681 5445*2^1213625+1 365342 L2831 2013 4682 7611*2^1213584+1 365330 L3732 2013 4683 7673*2^1213489+1 365301 L2520 2013 4684 9797*2^1213367+1 365264 L2626 2014 4685 9321*2^1213356+1 365261 L3807 2014 4686 4017*2^1213348+1 365258 L3514 2013 4687 3835*2^1213336+1 365255 L1741 2013 4688 1127*2^1213307+1 365245 L2799 2011 4689 9021*2^1213297+1 365243 L3806 2014 4690 4095*2^1213247-1 365228 L1959 2013 4691 6127*2^1213206+1 365216 L3717 2013 4692 5535*2^1213120-1 365190 L1828 2014 4693 4905*2^1212915+1 365128 L1455 2013 4694 4947*2^1212870+1 365114 L2715 2013 4695 7557*2^1212863+1 365113 L3762 2014 4696 4755*2^1212810+1 365096 L2117 2013 4697 6587*2^1212795+1 365092 L1741 2013 4698 1051*2^1212772+1 365084 L2785 2011 4699 3989*2^1212629+1 365042 L3035 2013 4700 2339*2^1212599+1 365033 L1741 2013 4701 5505*2^1212579+1 365027 L1741 2013 4702 1593*2^1212385+1 364968 L3548 2013 4703 4221*2^1212344+1 364956 L2038 2013 4704 883*2^1212322+1 364949 L2796 2011 4705 3645*2^1212210-1 364916 L3345 2014 4706 2197*2^1212176+1 364905 L3548 2013 4707 8241*2^1212157+1 364900 L3262 2014 4708 1121*2^1212101+1 364882 L2797 2011 4709 8713*2^1212070+1 364874 L3262 2014 4710 8257*2^1211980+1 364847 L3262 2014 4711 3707*2^1211959+1 364840 L1741 2013 4712 9365*2^1211945+1 364836 L2038 2014 4713 9641*2^1211889+1 364819 L3199 2014 4714 99*2^1211757+1 364778 L1446 2011 Divides GF(1211755,5) 4715 3947*2^1211707+1 364764 L3714 2013 4716 7407*2^1211486+1 364698 L2413 2013 4717 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 4718 595*2^1211446+1 364685 L2551 2011 4719 7349*2^1211423+1 364679 L2413 2013 4720 1701*2^1211385+1 364667 L2831 2013 4721 4075*2^1211364+1 364661 L2626 2013 4722 5733*2^1211333+1 364652 L3728 2013 (**) 4723 4031*2^1211274-1 364634 L1959 2013 4724 5649*2^1211209+1 364614 L3262 2013 4725 2085*2^1211126-1 364589 L840 2013 4726 9*10^364521-1 364522 p297 2010 Near-repdigit 4727 1285*2^1210478+1 364394 L3707 2013 4728 8527*2^1210446+1 364385 L3796 2014 4729 6381*2^1210317+1 364346 L2826 2013 4730 6315*2^1210286+1 364337 L1379 2013 4731 117*2^1210282-1 364334 L2055 2011 4732 5889*2^1210238+1 364322 L1741 2013 4733 2945*2^1210165+1 364300 L3035 2013 4734 108045*2^1210075-1 364274 L466 2012 4735 2415*2^1209888+1 364216 L2520 2013 4736 7827*2^1209792+1 364188 L2327 2013 4737 1863*2^1209781+1 364184 L1957 2013 4738 9935*2^1209757+1 364178 L2997 2014 4739 707*2^1209654-1 364145 L1815 2012 4740 1615*2^1209570+1 364121 L1957 2013 4741 181*2^1209572+1 364120 L2904 2011 4742 1365*2^1209522+1 364106 L1134 2012 4743 369*2^1209435+1 364079 L1745 2011 4744 403*2^1209326+1 364047 L2903 2011 4745 951*2^1209290-1 364036 L1815 2012 4746 333*2^1209174-1 364001 L1830 2010 4747 273*2^1209170-1 363999 L2338 2012 4748 9935*2^1209103+1 363981 L2080 2014 4749 5387*2^1209099+1 363979 L3262 2013 4750 9457*2^1209070+1 363971 L3262 2014 4751 357868^65536+1 363969 g266 2003 Generalized Fermat 4752 1687*2^1209028+1 363957 L2520 2013 4753 2013*2^1209020-1 363955 L3345 2014 4754 5635*2^1208966+1 363939 L3262 2013 4755 2415*2^1208963-1 363938 L2074 2013 4756 5871*2^1208961+1 363938 L1741 2013 4757 1947*2^1208896+1 363918 L3483 2013 4758 703*2^1208892+1 363916 L2100 2011 4759 1035*2^1208884-1 363914 L1828 2012 4760 4295*2^1208815+1 363894 L3725 2013 4761 1207*2^1208688+1 363855 L3271 2013 4762 7161*2^1208613+1 363833 L3262 2013 4763 4773*2^1208576+1 363822 L2901 2013 4764 8469*2^1208534+1 363809 L3588 2014 4765 4453*2^1208534+1 363809 L3727 2013 4766 8943*2^1208405+1 363771 L3262 2014 4767 1051*2^1208312+1 363742 L2659 2011 4768 241*2^1208307-1 363740 L2338 2012 4769 249*2^1208142+1 363690 L1158 2011 4770 7035*2^1208088+1 363675 L3724 2013 4771 7785*2^1208037+1 363660 L2322 2013 4772 2337*2^1208018+1 363654 L3548 2013 4773 3007*2^1207962+1 363637 L3548 2013 4774 7001*2^1207849+1 363603 L3246 2013 4775 6741*2^1207844+1 363602 L2520 2013 4776 835*2^1207821-1 363594 L1815 2012 4777 8445*2^1207799+1 363588 L1503 2014 4778 2173*2^1207728+1 363566 L3548 2013 4779 5315*2^1207551+1 363513 L2131 2013 4780 5259*2^1207421+1 363474 L2826 2013 4781 155*2^1207424-1 363474 L1959 2011 4782 165*2^1207393+1 363464 L2884 2012 (**) 4783 2245*2^1207338+1 363449 L3548 2013 4784 209*2^1207276-1 363429 L2338 2011 4785 8425*2^1207184+1 363403 L3262 2014 4786 2699*2^1207171+1 363399 L3548 2013 4787 8967*2^1207111+1 363381 L3262 2014 4788 6553*2^1207094+1 363376 L3469 2013 4789 6063*2^1207026+1 363355 L3262 2013 4790 4137*2^1206972+1 363339 L3199 2013 4791 2713*2^1206966+1 363337 L2454 2013 4792 2783*2^1206929+1 363326 L3548 2013 4793 8757*2^1206864+1 363307 L3588 2014 4794 154962*221^154962-1 363297 L3269 2012 Generalized Woodall 4795 2209*2^1206794+1 363285 L3035 2013 Generalized Fermat 4796 6665*2^1206719+1 363263 L3695 2013 4797 4957*2^1206582+1 363222 L3699 2013 4798 7361*2^1206579+1 363221 L2705 2013 4799 183916*5^519597-1 363188 p304 2010 4800 2579*2^1206467+1 363187 L2700 2013 4801 1815*2^1206355+1 363153 L2583 2013 4802 69*2^1206353+1 363151 g246 2010 4803 235*2^1206136+1 363086 L2516 2011 4804 973*2^1206088+1 363072 L2085 2011 4805 1097*2^1206076-1 363069 L1828 2012 4806 8977*2^1205958+1 363034 L1741 2014 4807 1119*2^1205879-1 363009 L1828 2012 4808 2937*2^1205863+1 363005 L3548 2013 4809 120585*2^1205851-1 363003 p260 2012 Generalized Woodall (**) 4810 5595*2^1205852+1 363002 L3441 2013 4811 9795*2^1205806+1 362988 L3262 2014 4812 4887*2^1205562+1 362915 L3262 2013 4813 8089*2^1205538+1 362908 L3755 2014 4814 8999*2^1205533+1 362906 L3262 2014 4815 5433*2^1205492+1 362893 L2675 2013 4816 9125*2^1205479+1 362890 L2080 2014 4817 429*2^1205440-1 362877 L1817 2013 4818 1423*2^1205415-1 362870 L3887 2014 4819 3015*2^1205331+1 362845 L3548 2013 4820 3269*2^1205319+1 362841 L3548 2013 4821 6855*2^1205215+1 362810 L2413 2013 4822 921*2^1205199+1 362805 L2794 2011 4823 2359*2^1205170+1 362796 L3702 2013 4824 2*698^127558-1 362757 L2054 2011 4825 1541*2^1204893+1 362713 L3500 2013 4826 1463*2^1204789+1 362681 L3548 2013 4827 9317*2^1204775+1 362678 L3588 2014 4828 269*2^1204740-1 362666 L282 2010 4829 6699*2^1204694+1 362653 L3548 2013 4830 9933*2^1204658+1 362643 L3743 2014 4831 7077*2^1204646+1 362639 L3262 2013 4832 78*916^122431-1 362630 p355 2013 4833 6981*2^1204555+1 362612 L3500 2013 4834 4601*2^1204485+1 362590 L3548 2013 (**) 4835 621*2^1204299+1 362533 L2793 2011 4836 475*2^1204215-1 362508 L1817 2013 4837 689*2^1204032-1 362453 L1815 2012 4838 7309*2^1203982+1 362439 L1344 2013 4839 9545*2^1203981+1 362439 L2080 2014 4840 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37 4841 861*2^1203625-1 362331 L251 2011 4842 7959*2^1203598+1 362324 L3548 2013 4843 3045*2^1203486+1 362289 L1745 2013 4844 1035*2^1203377-1 362256 L1828 2012 4845 2413*2^1203346+1 362247 L3711 2013 4846 9349*2^1203278+1 362227 L3262 2014 4847 7569*2^1203247+1 362218 L3717 2013 4848 8467*2^1203080+1 362168 L3794 2014 4849 7255*2^1203032+1 362153 L1130 2013 4850 7557*2^1202959+1 362131 L2322 2013 4851 1661*2^1202885+1 362108 L3548 2013 4852 25*800^124713-1 362055 p355 2012 4853 2691*2^1202613+1 362027 L3548 2013 4854 945*2^1202538-1 362003 L1815 2012 4855 8759*2^1202515+1 361998 L2066 2014 4856 2085*2^1202408+1 361965 L3548 2013 4857 3339*2^1202405+1 361964 L3548 2013 4858 279*2^1202283-1 361926 L2338 2012 4859 6747*2^1202218+1 361908 L3548 2013 4860 2277*2^1202003+1 361843 L2322 2013 4861 2511*2^1201983+1 361837 L3711 2013 4862 5183*2^1201889+1 361809 L3721 2013 4863 5453*2^1201853+1 361798 L3548 2013 4864 537*2^1201791+1 361778 L2702 2011 4865 4685*2^1201757+1 361769 L3548 2013 4866 5385*2^1201653+1 361738 L1186 2013 4867 927*2^1201644-1 361734 L1815 2012 4868 4303*2^1201548+1 361706 L3548 2013 4869 1605*2^1201511+1 361695 L3548 2013 4870 4193*2^1201461+1 361680 L3435 2013 4871 4875*2^1201242+1 361614 L1745 2013 4872 2707*2^1201192+1 361599 L3548 2013 4873 1107*2^1201166-1 361591 L1828 2012 4874 8277*2^1201070+1 361563 L3262 2014 4875 3*2^1201046-1 361552 L77 2004 4876 8787*2^1201011+1 361545 L3262 2014 4877 1323*2^1200980-1 361535 L1828 2012 4878 545*2^1200769+1 361471 L1934 2011 4879 6185*2^1200633+1 361431 L3548 2013 4880 469*2^1200635-1 361430 L1817 2013 4881 863*2^1200565+1 361410 L1533 2011 4882 1881*2^1200532+1 361400 L3262 2013 4883 9179*2^1200499+1 361391 L3297 2014 4884 3909*2^1200477+1 361384 L1132 2013 4885 8189*2^1200409+1 361364 L3262 2014 4886 7807*2^1200404+1 361362 L3548 2013 4887 6*272^148426-1 361355 L1471 2011 4888 699*2^1200343+1 361343 L1303 2011 4889 1467*2^1200198+1 361299 L3548 2013 4890 6591*2^1200128+1 361279 L3262 2013 4891 8635*2^1200118+1 361276 L3262 2014 4892 6413*2^1200117+1 361276 L3548 2013 4893 8019*2^1199942+1 361223 L1158 2013 4894 183500*93^183500+1 361222 g157 2012 Generalized Cullen 4895 502541*2^1199930-1 361221 L93 2004 4896 2169*2^1199897+1 361209 L2520 2013 4897 1153*2^1199835-1 361190 L1828 2012 4898 5565*2^1199745+1 361163 L3548 2013 4899 155*2^1199689+1 361145 L1751 2011 (**) 4900 3651*2^1199635+1 361130 L3262 2013 4901 2317*2^1199620+1 361125 L3548 2013 4902 3073*2^1199602+1 361120 L3548 2013 (**) 4903 5145*2^1199509+1 361092 L3049 2013 4904 2611*2^1199467-1 361079 L2708 2011 4905 3895*2^1199424+1 361067 L3548 2013 4906 4179*2^1199409-1 361062 L1959 2013 4907 9853*2^1199286+1 361026 L3699 2013 4908 6855*2^1199276+1 361022 L3698 2013 4909 4885*2^1199260+1 361017 L3700 2013 4910 2707*2^1199212+1 361003 L1957 2013 4911 9275*2^1199179+1 360993 L3548 2013 4912 4021*2^1199103-1 360970 L1959 2013 4913 3565*2^1199092+1 360967 L3362 2013 4914 3703*2^1199010+1 360942 L1741 2013 4915 2363*2^1198977+1 360932 L1130 2013 4916 7723*2^1198934+1 360919 L3262 2013 4917 943*2^1198931-1 360918 L1815 2012 4918 7143*2^1198797+1 360878 L3548 2013 4919 1221*2^1198713+1 360852 L3696 2013 4920 2199*2^1198573+1 360810 L3526 2013 4921 1011*2^1198498-1 360787 L1828 2012 4922 8459*2^1198481+1 360783 L3699 2013 4923 6759*2^1198450+1 360774 L3035 2013 4924 3599*2^1198443+1 360771 L1741 2013 4925 587*2^1198111+1 360671 L2620 2011 4926 5029*2^1197990+1 360635 L2413 2013 4927 4175*2^1197888-1 360604 L1959 2013 4928 8601*2^1197844+1 360591 L2659 2013 4929 8649*2^1197743+1 360561 L1492 2013 4930 4451*2^1197727+1 360556 L1741 2013 4931 5707*2^1197636+1 360529 L1204 2013 4932 6411*2^1197487+1 360484 L3609 2013 4933 2697*2^1197452+1 360473 L3705 2013 4934 4551*2^1197356+1 360444 L3294 2013 4935 6175*2^1197272+1 360419 L3696 2013 4936 9999992*10^360403-1 360410 L1958 2011 Near-repdigit 4937 8939*2^1197185+1 360393 L2981 2013 4938 34693*2^1197131-1 360377 L2055 2011 4939 10^360360-10^183037-1 360360 p374 2014 Near-repdigit 4940 83*706^126486-1 360336 L1471 2011 4941 9867*2^1196984+1 360333 L1204 2013 4942 3201*2^1196967+1 360327 L3695 2013 4943 1027*2^1196957-1 360323 L1828 2012 4944 7737*2^1196900+1 360307 L3317 2013 4945 1335*2^1196731-1 360256 L1828 2012 4946 1029*2^1196674+1 360238 L1408 2011 4947 4827*2^1196655+1 360233 L2520 2013 4948 1549*2^1196654+1 360232 L3693 2013 (**) 4949 163*2^1196434+1 360165 L1751 2011 4950 1019*2^1196379+1 360149 L1513 2011 4951 4809*2^1196371+1 360148 L3548 2013 4952 7377*2^1196227+1 360105 L3548 2013 4953 53542*5^515155-1 360083 p305 2010 4954 9711*2^1196141+1 360079 L3294 2013 4955 5335*2^1196128+1 360075 L1158 2013 4956 7905*2^1196099+1 360066 L1158 2013 4957 2767*2^1196080+1 360060 L3372 2013 4958 7107*2^1195843+1 359989 L1204 2013 4959 843*2^1195408-1 359857 L1815 2012 4960 9753*2^1195376+1 359849 L2675 2013 4961 2501*2^1195309+1 359828 L3117 2013 4962 153222*223^153222-1 359818 L2777 2012 Generalized Woodall 4963 1195203*2^1195203-1 359799 L124 2005 Woodall 4964 9123*2^1195132+1 359775 L3548 2013 4965 4005*2^1195016+1 359740 L3675 2013 4966 7095*2^1194811+1 359678 L3548 2013 4967 8889*2^1194721+1 359651 L2603 2013 4968 3591*2^1194692+1 359642 L3141 2013 4969 142223*2^1194492-1 359584 L3169 2012 4970 3827*2^1194495+1 359583 L3548 2013 4971 1355*2^1194487+1 359580 L3685 2013 4972 6279*2^1194351+1 359540 L3548 2013 4973 2615*2^1194279+1 359518 L3405 2013 4974 193558*72^193558-1 359507 p357 2013 Generalized Woodall 4975 1765*2^1194186+1 359490 L2735 2013 4976 7573*2^1194172+1 359486 L1158 2013 4977 5*2^1194164-1 359480 L478 2008 4978 2349*2^1194134+1 359474 L1204 2013 4979 2759*2^1194071+1 359455 L1158 2013 4980 1075*2^1194063-1 359452 L1828 2012 4981 1767*2^1194030+1 359443 L3173 2013 4982 9399*2^1193977+1 359427 L3548 2013 4983 5623*2^1193892+1 359402 L3895 2013 4984 4895*2^1193889+1 359401 L2675 2013 4985 873*2^1193802-1 359374 L1815 2012 4986 93*10^359354-1 359356 L3735 2013 Near-repdigit 4987 1275*2^1193685+1 359339 L3262 2013 4988 3697*2^1193564+1 359303 L2826 2013 4989 3639*2^1193363+1 359242 L3548 2013 4990 6225*2^1193341+1 359236 L1344 2013 4991 5685*2^1193328+1 359232 L1204 2013 4992 3465*2^1193309+1 359226 L2859 2013 4993 8993*2^1193265+1 359213 L3548 2013 4994 1165*2^1193202+1 359193 L2540 2011 4995 32041*2^1193168+1 359184 L123 2014 Generalized Fermat 4996 6279*2^1193130+1 359172 L1158 2013 4997 2273*2^1193085+1 359158 L2447 2013 4998 105*2^1193072-1 359153 L384 2009 4999 83*2^1192950-1 359116 L1884 2010 5000 8*202^155771-1 359108 p258 2010 5201 2*10859^87905+1 354767 g427 2014 Divides Phi(10859^87905,2) 5539 174885*98^174885+1 348241 g157 2012 Generalized Cullen 5570 83*2^1154617+1 347577 L446 2010 Divides GF(1154616,3) (**) 5585 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 5600 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5756 101*2^1142981+1 344074 L1446 2011 Divides GF(1142980,3) 5805 Phi(3,-13617^41472) 342898 p294 2014 Generalized unique 5897 113756*10^341268-1 341274 L3532 2013 Generalized Woodall (**) 5903 2*263^140989+1 341188 g424 2011 Divides Phi(263^140989,2) (**) 5938 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 5955 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 5957 178192*3^712768+1 340083 L2777 2011 Generalized Cullen (**) 6020 14521*6^435631+1 338991 L2777 2012 Generalized Cullen (**) 6043 2*467^126775+1 338403 g425 2011 Divides Phi(467^126775,2) (**) 6191 9999993*10^335905-1 335912 L1958 2013 Near-repdigit 6417 9999993*10^331938-1 331945 L1958 2013 Near-repdigit 6465 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 6521 Phi(3,-9499^41472) 329925 p294 2014 Generalized unique 6665 2*2099^98525+1 327302 g424 2014 Divides Phi(2099^98525,2) (**) 6666 93*2^1087202+1 327283 L669 2010 Divides GF(1087199,12) 6707 2*2099^98351+1 326724 g424 2014 Divides Phi(2099^98351,2) (**) 7089 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome (**) 7094 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome (**) 7109 6*10^319889-1 319890 p297 2010 Near-repdigit 7319 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 7409 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 7611 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 7631 549*2^1033187+1 311024 L1224 2011 Divides GF(1033186,5) 7840 Phi(3,-14809^36864) 307485 p294 2014 Generalized unique 7912 Phi(3,-1925^46656) 306477 L3839 2014 Generalized unique (**) 7940 151*2^1016600+1 306030 L669 2010 Divides GF(1016599,5) 7980 166585*68^166585-1 305274 p357 2013 Generalized Woodall 8003 139948*151^139948+1 304949 g407 2010 Generalized Cullen 8132 Phi(3,-12890^36864) 303041 p294 2014 Generalized unique 8458 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36 8506 225*2^988695+1 297630 L1446 2010 Divides GF(988693,6) 8541 191013*6^382026+1 297280 L3532 2014 Generalized Cullen 8691 2*4019^81951+1 295362 g424 2014 Divides Phi(4019^81951,2) (**) 8837 Phi(3,-29906^32768) 293324 L3839 2014 Generalized unique 8999 2*1931^88527+1 290881 g424 2014 Divides Phi(1931^88527,2) (**) 9039 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 9113 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 9127 Phi(3,-25719^32768) 289031 L3839 2014 Generalized unique (**) 9165 Phi(3,-13299^34992) 288602 p294 2014 Generalized unique 9244 2*7547^74163+1 287588 g424 2014 Divides Phi(7547^74163,2) (**) 9264 2*827^98511+1 287407 g404 2009 Divides Phi(827^98511,2) 9427 2*6311^74981+1 284936 g424 2014 Divides Phi(6311^74981,2) (**) 9821 2*131^131925+1 279322 g424 2010 Divides Phi(131^131925,2) (**) 9955 873*2^922545+1 277717 L153 2010 Divides GF(922543,3)
10058 Phi(5,(1121302646*16001#/5+1)*(28633*16001#-1)^9)
276344 x38 2014 Generalized unique (**)
10059 Phi(5,(422716551*16001#/5+1)*(24696*16001#-1)^9)
276340 x38 2014 Generalized unique (**)
10060 Phi(5,(572949246*16001#/5+1)*(23208*16001#-1)^9)
276340 x38 2014 Generalized unique (**)
10061 Phi(5,(130813006*16001#/5+1)*(23208*16001#-1)^9)
276337 x38 2014 Generalized unique (**)
10062 Phi(5,(323243446*16001#/5+1)*(16051*16001#-1)^9)
276333 x38 2014 Generalized unique (**)
10063 Phi(5,(815932961*16001#/5+1)*(13303*16001#-1)^9)
276332 x38 2014 Generalized unique (**)
10064 Phi(5,(1353907141*16001#/5+1)*(11725*16001#-1)^9)
276331 x38 2014 Generalized unique (**)
10065 Phi(5,(1381740026*16001#/5+1)*(10862*16001#-1)^9)
276330 x38 2014 Generalized unique (**)
10067 Phi(5,(323094346*16001#/5+1)*(12015*16001#-1)^9)
276329 x38 2014 Generalized unique (**)
10112 113*2^916801+1 275987 L153 2009
Divides GF(916800,5), GF(916800,12) (**)
10113 3*2^916773+1 275977 g245 2001
Divides GF(916771,3), GF(916772,10)
10156 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999
275495 p44 2012 Palindrome (**)
10334 1705*2^906110+1 272770 L3174 2012
Divides Fermat F(906108)
10598 10^269479-7*10^134739-1 269479 p235 2012
Near-repdigit, Palindrome
10607 43*2^894766+1 269354 g279 2006 Divides GF(894765,5) 10646 2*695^94625+1 268924 L1471 2011
Divides Phi(695^94625/5^4,2) [g427] (**)
10796 11*2^886071+1 266735 g277 2005
Divides GF(886070,12)
11421 2^859433-1 258716 SG 1994 Mersenne 33 12065 249*2^832207+1 250522 L669 2010 Divides GF(832206,5) 12288 1815*2^823632+1 247942 L1741 2012
Divides GF(823629,12)
12811 7*2^804534+1 242190 g196 2003
Divides GF(804533,12)
13211 5215*2^789906+1 237790 L2659 2012
Divides GF(789905,6) (**)
14103 2^756839-1 227832 SG 1992 Mersenne 32 (**) 14943 59*2^727815+1 219096 p227 2008
Divides GF(727814,12)
16144 Phi(3,10^104279)+(137*10^104280+731*10^93395)*(10^10884-1)/999
208559 p44 2014 Palindrome (**)
16145 Phi(3,10^104276)+(137*10^104277+731*10^99683)*(10^4593-1)/999
208553 p44 2014 Palindrome (**)
16152 Phi(3,10^104257)+(137*10^104258+731*10^99193)*(10^5064-1)/999
208515 p44 2014 Palindrome (**)
16397 Phi(3,10^103289)+(137*10^103290+731*10^90449)*(10^12840-1)/999
206579 p44 2014 Palindrome (**)
16399 Phi(3,10^103282)+(137*10^103283+731*10^85009)*(10^18273-1)/999
206565 p44 2014 Palindrome (**)
16426 Phi(3,10^103182)+(137*10^103183+731*10^66639)*(10^36543-1)/999
206365 x29 2014 Palindrome (**)
16428 Phi(3,10^103174)+(137*10^103175+731*10^78103)*(10^25071-1)/999
206349 p44 2014 Palindrome (**)
16432 Phi(3,10^103133)+(137*10^103134+731*10^98675)*(10^4458-1)/999
206267 p44 2014 Palindrome (**)
16433 Phi(3,10^103131)+(137*10^103132+731*10^78393)*(10^24738-1)/999
206263 p44 2014 Palindrome (**)
16435 Phi(3,10^103124)+(137*10^103125+731*10^84659)*(10^18465-1)/999
206249 p44 2014 Palindrome (**)
16449 Phi(3,10^103078)+(137*10^103079+731*10^81751)*(10^21327-1)/999
206157 p44 2014 Palindrome (**)
16461 Phi(3,10^103042)+(137*10^103043+731*10^69745)*(10^33297-1)/999
206085 p44 2014 Palindrome (**)
16462 Phi(3,10^103042)+(137*10^103043+731*10^88753)*(10^14289-1)/999
206085 p44 2013 Palindrome (**)
16464 13*2^684560+1 206075 g267 2003
Divides GF(684557,10), GF(684559,6)
16468 Phi(3,10^103028)+(137*10^103029+731*10^69587)*(10^33441-1)/999
206057 p44 2014 Palindrome (**)
16920 27*2^672007+1 202296 g279 2005
Divides Fermat F(672005) (**)
17119 667071*2^667071-1 200815 g55 2000 Woodall 17142 18543637900515*2^666668-1 200701 L2429 2012
Sophie Germain (2p+1)
17143 9094283341425*2^666669-1 200701 p199 2011
Arithmetic progression (3,d=32289415560495*2^666666)
17189 40464851170905*2^666666-1 200701 L1008 2011
Arithmetic progression (2,d=32289415560495*2^666666) [p199]
17242 18543637900515*2^666667-1 200701 L2429 2012
Sophie Germain (p) (**)
17243 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 17244 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) (**) 17365 26767338410445*2^666666-1 200700 p199 2011
Arithmetic progression (3,d=12521740750545*2^666666)
17666 23716957113345*2^666666-1 200700 p199 2011
Arithmetic progression (3,d=2697434638065*2^666668)
17716 11638738675125*2^666667-1 200700 p199 2011
Arithmetic progression (3,d=9571322415225*2^666666)
18517 14646182194005*2^666666-1 200700 p199 2011
Arithmetic progression (3,d=3388839720735*2^666666)
18559 3561399414975*2^666668-1 200700 L1661 2011
Arithmetic progression (2,d=12521740750545*2^666666) [p199]
18619 13706154935025*2^666666-1 200700 L967 2011
Arithmetic progression (2,d=9571322415225*2^666666) [p199]
18719 12927218561085*2^666666-1 200700 L2078 2011
Arithmetic progression (2,d=2697434638065*2^666668) [p199]
18886 5628671236635*2^666667-1 200700 L1945 2011
Arithmetic progression (2,d=3388839720735*2^666666) [p199]
19194 4087717805205*2^666667-1 200700 L1633 2010
Arithmetic progression (1,d=32289415560495*2^666666) [p199]
19241 7868502752535*2^666666-1 200700 L1183 2010
Arithmetic progression (1,d=3388839720735*2^666666) [p199]
19611 516854064975*2^666669-1 200700 L1286 2010
Arithmetic progression (1,d=9571322415225*2^666666) [p199]
19801 2137480008825*2^666666-1 200699 L1706 2010
Arithmetic progression (1,d=2697434638065*2^666668) [p199]
19846 1723856909355*2^666666-1 200699 L934 2010
Arithmetic progression (1,d=12521740750545*2^666666) [p199]
21793 659*2^617815+1 185984 L732 2009
Divides Fermat F(617813)
23069 151*2^585044+1 176118 L446 2007
Divides Fermat F(585042)
23813 519*2^567235+1 170758 L656 2009
Divides Fermat F(567233)
23925 392113#+1 169966 p16 2001 Primorial 25564 366439#+1 158936 p16 2001 Primorial 27163 243*2^495732+1 149233 L165 2007
Divides Fermat F(495728), GF(495726,3), GF(495728,6), GF(495727,12) (**)
27841 9265*2^482072+1 145123 L635 2009
Divides GF(482070,10)
27846 481899*2^481899+1 145072 gm 1998 Cullen 28109 651*2^476632+1 143484 L668 2008
Divides Fermat F(476624)
28194 34790!-1 142891 p85 2002 Factorial 28202 6841*2^474348+1 142797 L1065 2009
Divides GF(474347,10)
28329 89*2^472099+1 142118 p114 2004
Divides Fermat F(472097)
28844 3911*2^462579+1 139254 L679 2009
Divides GF(462577,10)
32373 2^364289-2^182145+1 109662 p58 2001
Gaussian Mersenne norm 35
32507 361275*2^361275+1 108761 DS 1998 Cullen 32674 26951!+1 107707 p65 2002 Factorial 34175 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 34176 65516468355*2^333333-1 100355 L923 2009 Twin (p) (**) 39045 21480!-1 83727 p65 2001 Factorial 39454 183027*2^265441-1 79911 L983 2010
Sophie Germain (2p+1)
39455 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 39530 262419*2^262419+1 79002 DS 1998 Cullen 39865 648621027630345*2^253825-1 76424 x24 2009
Sophie Germain (2p+1)
39866 620366307356565*2^253825-1 76424 x24 2009
Sophie Germain (2p+1)
39867 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 39868 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 40364 primV(111534,1,27000) 72683 x25 2013
Generalized Lucas primitive part (**)
41726 2^216091-1 65050 S 1985 Mersenne 31 41949 (63847^13339-1)/63846 64091 p170 2013
Generalized repunit (**)
42107 145823#+1 63142 p21 2000 Primorial 42382 2^203789+2^101895+1 61347 O 2000
Gaussian Mersenne norm 34
42640 (26371^13681-1)/26370 60482 p170 2012
Generalized repunit (**)
43310 (4529^16381-1)/4528 59886 CH2 2012
Generalized repunit (**)
43396 (9082^15091-1)/9081 59729 CH2 2014
Generalized repunit (**)
43673 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 43674 2003663613*2^195000-1 58711 L202 2007 Twin (p) 43931 primV(27655,1,19926) 57566 x25 2013
Generalized Lucas primitive part (**)
45590 607095*2^176312-1 53081 L983 2009
Sophie Germain (2p+1)
45591 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 45740 (38284^11491-1)/38283 52659 CH2 2013
Generalized repunit (**)
45958 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 45959 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 46089 48047305725*2^172404-1 51910 L99 2007
Sophie Germain (2p+1)
46090 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 46188 137211941292195*2^171961-1 51780 x24 2006
Sophie Germain (2p+1)
46189 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 46190 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 46191 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 46192 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 46193 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 46194 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 46195 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 46409 (34120^11311-1)/34119 51269 CH2 2011
Generalized repunit (**)
47007 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 47008 33218925*2^169690-1 51090 g259 2002 Twin (p) 47739 2^160423-2^80212+1 48293 O 2000
Gaussian Mersenne norm 33
47860 1579755*2^158713+1 47784 L3494 2014
Cunningham chain 2nd kind (2p-1)
47861 1579755*2^158712+1 47784 L3494 2014
Cunningham chain 2nd kind (p)
47865 primV(40395,-1,15588) 47759 x23 2007
Generalized Lucas primitive part (**)
47934 primV(53394,-1,15264) 47200 CH4 2007
Generalized Lucas primitive part (**)
48142 22835841624*7^54321+1 45917 p296 2010 Twin (p+2) 48143 22835841624*7^54321-1 45917 p296 2010 Twin (p) 48179 1679081223*2^151618+1 45651 L527 2012 Twin (p+2) 48180 1679081223*2^151618-1 45651 L527 2012 Twin (p) 48184 9606632571*2^151515+1 45621 p282 2014 Twin (p+2) 48185 9606632571*2^151515-1 45621 p282 2014 Twin (p) 48209 151023*2^151023-1 45468 g25 1998 Woodall 48782 648309*2^148311+1 44652 L983 2010
Cunningham chain 2nd kind (2p-1)
48783 648309*2^148310+1 44652 L983 2010
Cunningham chain 2nd kind (p)
48981 71509*2^143019-1 43058 g23 1998
Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12]
49084 84966861*2^140219+1 42219 L3121 2012 Twin (p+2) 49085 84966861*2^140219-1 42219 L3121 2012 Twin (p) 49093 31737014565*2^140004-1 42156 L95 2010
Sophie Germain (2p+1)
49094 31737014565*2^140003-1 42156 L95 2010 Sophie Germain (p) 49095 14962863771*2^140002-1 42155 L95 2010
Sophie Germain (2p+1)
49096 12378188145*2^140002+1 42155 L95 2010 Twin (p+2) 49097 12378188145*2^140002-1 42155 L95 2010 Twin (p) 49098 23272426305*2^140001+1 42155 L95 2010 Twin (p+2) 49099 23272426305*2^140001-1 42155 L95 2010 Twin (p) 49100 14962863771*2^140001-1 42155 L95 2010 Sophie Germain (p) 49141 (32556^9283-1)/32555 41887 CH2 2011
Generalized repunit (**)
49410 (1549^12973-1)/1548 41382 p170 2010
Generalized repunit (**)
49459 552903*2^136157+1 40994 L983 2010
Cunningham chain 2nd kind (2p-1)
49460 552903*2^136156+1 40993 L983 2010
Cunningham chain 2nd kind (p)
50300 2^132049-1 39751 S 1983 Mersenne 30 50313 primV(4836,1,16704) 39616 x25 2013
Generalized Lucas primitive part (**)
50804 8151728061*2^125987+1 37936 p35 2010 Twin (p+2) 50805 8151728061*2^125987-1 37936 p35 2010 Twin (p) 50902 163221*2^124601+1 37514 L983 2009
Cunningham chain 2nd kind (2p-1)
50903 163221*2^124600+1 37514 L983 2009
Cunningham chain 2nd kind (p)
50954 33759183*2^123459-1 37173 L527 2009
Sophie Germain (2p+1)
50955 33759183*2^123458-1 37173 L527 2009 Sophie Germain (p) 50978 (28839^8317-1)/28838 37090 CH6 2006
Generalized repunit (**)
51134 (4366^10099-1)/4365 36758 x14 2011
Generalized repunit (**)
51173 7068555*2^121302-1 36523 L100 2005
Sophie Germain (2p+1)
51174 7068555*2^121301-1 36523 L100 2005 Sophie Germain (p) 51179 2*(2^1562*3^109*828814575031^420*955637315837^480*672198801383^498*162\
946224587^484*258724139309^335*327170641169^422*880151556857^437-1)+1 36498 p360 2013 Sophie Germain (2p+1)
51182 2^1562*3^109*828814575031^420*955637315837^480*672198801383^498*162946\
224587^484*258724139309^335*327170641169^422*880151556857^437-1 36498 p360 2013 Sophie Germain (p)
51330 2^1799*3^137*474579581429^465*443749004359^326*644541865141^488*561014\
826899^421*725590842793^493*623163115793^476*383657519591^332+1 35851 p360 2013 Twin (p+2)
51331 2^1799*3^137*474579581429^465*443749004359^326*644541865141^488*561014\
826899^421*725590842793^493*623163115793^476*383657519591^332-1 35851 p360 2013 Twin (p)
51335 598899*2^118987+1 35825 L983 2010 Twin (p+2) 51336 598899*2^118987-1 35825 L983 2010 Twin (p) 51338 441797560*3^75001+1 35794 L3323 2012
Cunningham chain 2nd kind (2p-1)
51340 220898780*3^75001+1 35793 L3323 2012
Cunningham chain 2nd kind (p)
51431 2*(2^1512*3^143*973012422269^378*471613096919^407*540579043769^407*251\
138810633^368*589234783037^445*475774278173^498*579909737837^457-1)+1 35206 p360 2013 Sophie Germain (2p+1)
51432 2^1512*3^143*973012422269^378*471613096919^407*540579043769^407*251138\
810633^368*589234783037^445*475774278173^498*579909737837^457-1 35206 p360 2013 Sophie Germain (p)
51494 307259241*2^115599+1 34808 g336 2009 Twin (p+2) 51495 307259241*2^115599-1 34808 g336 2009 Twin (p) 51528 primV(38513,-1,11502) 34668 x23 2006
Generalized Lucas primitive part (**)
51573 2540041185*2^114730-1 34547 g294 2003
Sophie Germain (2p+1)
51581 2540041185*2^114729-1 34547 g294 2003 Sophie Germain (p) 51687 60194061*2^114689+1 34533 g294 2002 Twin (p+2) 51688 60194061*2^114689-1 34533 g294 2002 Twin (p) 51741 primV(9008,1,16200) 34168 x23 2005
Generalized Lucas primitive part (**)
51872 5558745*10^33334+1 33341 p311 2011 Twin (p+2) 51873 5558745*10^33334-1 33341 p311 2011 Twin (p) 51969 2^110503-1 33265 WC 1988 Mersenne 29 (**) 52019 primV(6586,1,16200) 32993 x25 2013
Generalized Lucas primitive part (**)
52371 1124044292325*2^108000-1 32524 L99 2006
Sophie Germain (2p+1)
52372 1124044292325*2^107999-1 32523 L99 2006 Sophie Germain (p) 52373 112886032245*2^108001-1 32523 L99 2006
Sophie Germain (2p+1)
52374 112886032245*2^108000-1 32523 L99 2006 Sophie Germain (p) 53346 2^106693+2^53347+1 32118 O 2000
Gaussian Mersenne norm 32
53449 170152540*3^66215-1 31601 L3323 2012
Sophie Germain (2p+1)
53450 85076270*3^66215-1 31601 L3323 2012 Sophie Germain (p) 53508 (V(77786,1,6453)+1)/(V(77786,1,27)+1)
31429 x25 2012 Lehmer primitive part (**)
53578 2^1515*48688484017^560*133579779967^573*383159376767^784*960310896529^\
769+3 31112 p360 2013 Sophie Germain (2p+1)
53579 2^1514*48688484017^560*133579779967^573*383159376767^784*960310896529^\
769+1 31112 p360 2013 Sophie Germain (p)
53592 primV(10987,1,14400) 31034 x25 2005
Generalized Lucas primitive part (**)
53825 133603707*2^100014-1 30116 L167 2012
Sophie Germain (2p+1)
53826 133603707*2^100013-1 30116 L167 2012 Sophie Germain (p) 53827 38588805195*2^100003-1 30115 L95 2009
Sophie Germain (2p+1)
53830 38588805195*2^100002-1 30115 L95 2009 Sophie Germain (p) 53917 (11379^7411-1)/11378 30056 x14 2009
Generalized repunit (**)
53984 49363*2^98727-1 29725 Y 1997 Woodall 53988 U(2341,-1,8819) 29712 x25 2008
Generalized Lucas number (**)
55506 primV(24127,-1,6718) 29433 CH3 2005
Generalized Lucas primitive part (**)
55640 (13320^6997-1)/13319 28856 x14 2010
Generalized repunit (**)
55687 primV(45922,1,11520) 28644 x25 2011
Generalized Lucas primitive part (**)
55699 primV(205011) 28552 x39 2009
Lucas primitive part (**)
55730 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number (**) 55788 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number (**) 55911 90825*2^90825+1 27347 Y 1997 Cullen 56074 primV(5673,1,13500) 27028 CH3 2005
Generalized Lucas primitive part (**)
56190 primV(44368,1,9504) 26768 CH3 2005
Generalized Lucas primitive part (**)
56237 (3429^7549-1)/3428 26684 x14 2009
Generalized repunit (**)
56251 "τ(157^2206)" 26643 FE1 2011 ECPP (**) 56442 primV(10986,-1,9756) 26185 x23 2005
Generalized Lucas primitive part (**)
56543 primV(11076,-1,12000) 25885 x25 2005
Generalized Lucas primitive part (**)
56623 2^85237+2^42619+1 25659 x16 2000
Gaussian Mersenne norm 31
56701 primV(17505,1,11250) 25459 x25 2011
Generalized Lucas primitive part (**)
56703 U(2325,-1,7561) 25451 x20 2013
Generalized Lucas number (**)
56758 primV(42,-1,23376) 25249 x23 2007
Generalized Lucas primitive part (**)
56794 primV(7577,-1,10692) 25140 x33 2007
Generalized Lucas primitive part (**)
56800 primV(44573,-1,10125) 25105 CH4 2007
Generalized Lucas primitive part (**)
56804 (2^83339+1)/3 25088 c54 2014
ECPP, generalized Lucas number, Wagstaff (**)
56819 6753^5122+5122^6753 25050 FE1 2010 ECPP (**) 56886 primV(13896,1,11250) 24858 x25 2011
Generalized Lucas primitive part (**)
56954 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number (**) 56967 (13096^5953-1)/13095 24506 CH6 2007
Generalized repunit (**)
57622 492590931*2^80000-1631979959*2^25001-1
24092 p199 2010 Arithmetic progression (4,d=164196977*2^80000-1631979959*2^25000) (**)
57762 "-τ(691^1522)" 23770 c65 2014 ECPP (**) 57769 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number (**) 57816 6917!-1 23560 g1 1998 Factorial 57852 (89^11971-1)/88 23335 CH2 2009
Generalized repunit (**)
57854 (23151^5347-1)/23150 23333 x14 2008
Generalized repunit (**)
57869 2^77291+2^38646+1 23267 O 2000
Gaussian Mersenne norm 30
57875 (V(59936,1,4863)+1)/(V(59936,1,3)+1)
23220 x25 2013 Lehmer primitive part (**)
57911 (5855^6121-1)/5854 23058 CH1 2005
Generalized repunit (**)
57913 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number (**) 58013 (V(45366,1,4857)+1)/(V(45366,1,3)+1)
22604 x25 2013 Lehmer primitive part (**)
58032 "τ(257^1698)" 22506 c72 2014 ECPP (**) 58056 (2008^6781-1)/2007 22393 CH6 2010
Generalized repunit (**)
58089 10^22250+57913 22251 c35 2014 ECPP (**) 58098 2^73845+14717 22230 c61 2013 ECPP (**) 58132 2^73360+10711 22084 c61 2014 ECPP (**) 58243 U(19258,-1,5039) 21586 x23 2007
Generalized Lucas number (**)
58270 6380!+1 21507 g1 1998 Factorial 58353 (V(23354,1,4869)-1)/(V(23354,1,9)-1)
21231 x25 2013 Lehmer primitive part (**)
58354 (19979^4933-1)/19978 21211 x14 2011
Generalized repunit (**)
58383 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number (**) 58539 ((((((2521008887^3+80)^3+12)^3+450)^3+894)^3+3636)^3+70756)^3+97220
20562 FE1 2006 ECPP, Mills' prime (**)
58598 U(11200,-1,5039) 20400 x25 2004
Generalized Lucas number, cyclotomy (**)
58663 Phi(23749,-10) 20160 c47 2014 Unique, ECPP (**) 58803 "τ(619^1296)" 19900 c72 2014 ECPP (**) 58822 V(94823) 19817 c73 2014
Lucas number, ECPP (**)
58830 U(8454,-1,5039) 19785 x25 2013
Generalized Lucas number (**)
58839 (9473^4969-1)/9472 19756 CH2 2008
Generalized repunit (**)
59896 U(6584,-1,5039) 19238 x23 2007
Generalized Lucas number (**)
59921 (2^63703-1)/42808417 19169 c59 2014
Mersenne cofactor, ECPP (**)
60056 V(89849) 18778 c70 2014
Lucas number, ECPP (**)
60071 primV(145353) 18689 c69 2013
ECPP, Lucas primitive part (**)
60072 Phi(14943,-100) 18688 c47 2014 Unique, ECPP (**) 60079 Phi(741,-63847^9)/44250132909040111
18666 c54 2013 ECPP (**)
60085 587*43103#/2310+657402 18662 c35 2013 ECPP (**) 60086 587*43103#/2310-455704 18662 c35 2013 ECPP (**) 60099 "τ(821^1162)" 18626 c75 2014 ECPP (**) 60183 Phi(18827,10) 18480 c47 2014 Unique, ECPP (**) 60311 42209#+1 18241 p8 1999 Primorial 60813 (V(46662,1,3879)-1)/(V(46662,1,9)-1)
18069 x25 2012 Lehmer primitive part (**)
60852 7457*2^59659+1 17964 Y 1997 Cullen 61105 Phi(26031,-10) 17353 c47 2014 Unique, ECPP (**) 61151 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number (**) 61201 U(81839) 17103 p54 2001
Fibonacci number (**)
61212 V(81671) 17069 c66 2013
Lucas number, ECPP (**)
61363 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 61364 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 61365 6521953289619*2^55555-5 16737 c58 2013
Triplet (1), ECPP (**)
61409 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002
Lehmer number, cyclotomy (**)
61475 U(10803,1,4081)-U(10803,1,4080) 16457 x25 2005
Lehmer number, cyclotomy (**)
61513 U(11091,-1,4049) 16375 CH3 2005
Generalized Lucas number (**)
61560 (V(21151,1,3777)-1)/(V(21151,1,3)-1)
16324 x25 2011 Lehmer primitive part (**)
61596 U(2554,-1,4751) 16185 CH3 2005
Generalized Lucas number (**)
61620 U(1599,-1,5039) 16141 x23 2007
Generalized Lucas number (**)
61681 U(2878,1,4620)-U(2878,1,4619) 15978 x25 2013 Lehmer number (**) 61682 U(10853,1,3960)+U(10853,1,3959) 15977 x25 2002
Lehmer number, cyclotomy
61873 U(9667,1,3960)-U(9667,1,3959) 15778 x25 2002
Lehmer number, cyclotomy
61891 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP (**) 61895 U(14257,-1,3779) 15694 x25 2004
Generalized Lucas number, cyclotomy (**)
61963 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44))
15537 x38 2009 Lehmer primitive part (**)
62042 (V(824,1,5277)-1)/(V(824,1,3)-1) 15379 x25 2013
Lehmer primitive part (**)
62085 U(13283,1,3697)+U(13283,1,3696) 15240 x25 2011 Lehmer number (**) 63008 1008075799*34687#+1 15004 p252 2010
Arithmetic progression (4,d=2571033*34687#) (**)
63044 (V(42995,1,3231)+1)/(V(42995,1,9)+1)
14929 x25 2012 Lehmer primitive part (**)
63057 U(8747,1,3780)+U(8747,1,3779) 14897 x25 2005 Lehmer number (**) 63079 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP (**) 63089 U(25700,1,3360)+U(25700,1,3359) 14813 x25 2004
Lehmer number, cyclotomy (**)
63090 2^49207-2^24604+1 14813 x16 2000
Gaussian Mersenne norm 29
63159 (V(8003,1,3771)+1)/(V(8003,1,9)+1)
14685 x25 2013 Lehmer primitive part (**)
63170 U(1493,-1,4621) 14665 CH3 2005
Generalized Lucas number (**)
63184 U(7431,1,3781)-U(7431,1,3780) 14633 x25 2013 Lehmer number (**) 63186 U(4951,1,3960)-U(4951,1,3959) 14628 CH3 2005 Lehmer number (**) 63261 U(6571,1,3781)-U(6571,1,3780) 14431 x25 2013 Lehmer number (**) 63362 U(6396,1,3781)+U(6396,1,3780) 14387 x25 2013 Lehmer number (**) 63365 U(12924,-12925,3499) 14382 x25 2005
Generalized Lucas number
63420 U(12113,-1,3499) 14284 CH3 2005
Generalized Lucas number (**)
63427 U(5192,1,3841)-U(5192,1,3840) 14267 x23 2005 Lehmer number (**) 63444 U(2441,-1,4201) 14228 CH3 2005
Generalized Lucas number (**)
63549 (V(5111,1,3789)+1)/(V(5111,1,9)+1)
14019 x25 2013 Lehmer primitive part (**)
63553 (V(5763,1,3753)+1)/(V(5763,1,27)+1)
14013 x25 2011 Lehmer primitive part (**)
63704 6*Bern(5534)/(89651360098907*22027790155387*114866371)
13862 c71 2014 Irregular, ECPP (**)
63718 (V(5132,1,3753)+1)/(V(5132,1,27)+1)
13825 x25 2011 Lehmer primitive part (**)
63739 primV(82630) 13814 c74 2014
Lucas primitive part, ECPP (**)
63791 (V(4527,1,3771)+1)/(V(4527,1,9)+1)
13754 x25 2013 Lehmer primitive part (**)
63911 6*Bern(5462)/(724389557*8572589*3742097186099)
13657 c64 2013 Irregular, ECPP (**)
64039 U(11194,-11195,3361) 13605 x25 2004
Generalized Lucas number (**)
64140 263821581*2^45001-487069965*2^25002-1
13556 p199 2010 Arithmetic progression (4,d=87940527*2^45001-487069965*2^25001) (**)
64141 4103163*2^45007-183009063*2^25003-1
13556 p199 2010 Arithmetic progression (4,d=1367721*2^45007-183009063*2^25002) (**)
64158 664227*2^45001-21037539*2^25006-1 13553 p199 2010
Arithmetic progression (4,d=221409*2^45001-21037539*2^25005) (**)
64166 U(2219,-1,4049) 13546 CH3 2005
Generalized Lucas number (**)
64246 U(475,-1,5039) 13486 x25 2003
Generalized Lucas number, cyclotomy (**)
64263 (V(3813,1,3771)-1)/(V(3813,1,9)-1)
13473 x25 2011 Lehmer primitive part (**)
64503 (V(3476,1,3771)-1)/(V(3476,1,9)-1)
13322 x25 2011 Lehmer primitive part (**)
64508 (V(3755,1,3753)-1)/(V(3755,1,27)-1)
13319 x25 2011 Lehmer primitive part (**)
64701 (V(3177,1,3771)-1)/(V(3177,1,9)-1)
13175 x25 2011 Lehmer primitive part (**)
64761 (V(3088,1,3771)+1)/(V(3088,1,9)+1)
13129 x25 2011 Lehmer primitive part (**)
64887 U(7537,-7538,3361) 13028 x23 2007
Generalized Lucas number (**)
64893 U(7512,-7513,3361) 13023 x25 2004
Generalized Lucas number (**)
65059 (2^42737+1)/3 12865 M 2007
ECPP, generalized Lucas number, Wagstaff (**)
65242 (V(49596,1,3375)+1)/(V(49596,1,675)+1)
12678 x25 2006 Lehmer primitive part (**)
65421 6*Bern(5078)/(64424527603*9985070580644364287)
12533 c63 2013 Irregular, ECPP (**)
65498 (2^41521-1)/41602235382028197528613357724450752065089
12459 c54 2012 Mersenne cofactor, ECPP (**)
65608 (2^41263-1)/(1402943*983437775590306674647)
12395 c59 2012 Mersenne cofactor, ECPP (**)
65858 p(120052058) 12198 c59 2012
Partitions, ECPP (**)
65859 p(120037981) 12197 c59 2014
Partitions, ECPP (**)
66435 primV(57724) 12063 p54 2001
Lucas primitive part, cyclotomy (**)
66865 V(56003) 11704 p193 2006 Lucas number (**) 66876 p(110030755) 11677 c59 2014
Partitions, ECPP (**)
67089 primU(67825) 11336 x23 2007
Fibonacci primitive part (**)
67105 primV(64484) 11306 c74 2014
Lucas primitive part, ECPP (**)
67128 3610!-1 11277 C 1993 Factorial (**) 67221 p(100090547) 11137 c59 2014
Partitions, ECPP (**)
67223 p(100077222) 11136 c59 2012
Partitions, ECPP (**)
67225 p(100065157) 11135 c59 2014
Partitions, ECPP (**)
67226 p(100057273) 11135 c59 2014
Partitions, ECPP (**)
67262 primV(63119) 11060 c74 2014
Lucas primitive part, ECPP (**)
67276 V(52859)/1124137922466041911 11029 c8 2014
Lucas cofactor, ECPP (**)
67302 primV(52534) 10979 c8 2014
Lucas primitive part, ECPP (**)
67305 primV(83277) 10970 c74 2014
Lucas primitive part, ECPP (**)
67340 3507!-1 10912 C 1992 Factorial (**) 67402 primV(68210) 10774 c8 2014
Lucas primitive part, ECPP (**)
67408 1258566*Bern(4462)/(2231*596141126178107*4970022131749)
10763 c64 2013 Irregular, ECPP (**)
67431 primV(77058) 10729 CH3 2005
Lucas primitive part (**)
67437 primV(112770) 10714 c8 2014
Lucas primitive part, ECPP (**)
67442 V(51349)/224417260052884218046541 10708 c8 2014
Lucas cofactor, ECPP (**)
67448 V(51169) 10694 p54 2001 Lucas number (**) 67467 U(51031)/95846689435051369 10648 c8 2014
Fibonacci cofactor, ECPP (**)
67476 V(50989)/69818796119453411 10640 c8 2014
Lucas cofactor, ECPP (**)
67491 Phi(13285,-10) 10625 c47 2012 Unique, ECPP (**) 67492 U(50833) 10624 CH4 2005
Fibonacci number (**)
67524 p(90048122) 10563 c59 2012
Partitions, ECPP (**)
67536 1213266377*2^35000+4859 10546 c4 2014
ECPP, consecutive primes arithmetic progression (3,d=2430) (**)
67537 1213266377*2^35000+2429 10546 c4 2014
ECPP, consecutive primes arithmetic progression (2,d=2430) (**)
67538 1213266377*2^35000-1 10546 p44 2014
Consecutive primes arithmetic progression (1,d=2430)
67539 1043085905*2^35000+18197 10546 c4 2014
ECPP, consecutive primes arithmetic progression (3,d=18198) (**)
67540 1043085905*2^35000-1 10546 p44 2014
Consecutive primes arithmetic progression (2,d=18198)
67541 1043085905*2^35000-18199 10546 c4 2014
ECPP, consecutive primes arithmetic progression (1,d=18198) (**)
67542 109061779*2^35003+11855 10545 c4 2014
ECPP, consecutive primes arithmetic progression (3,d=5928) (**)
67543 109061779*2^35003+5927 10545 c4 2014
ECPP, consecutive primes arithmetic progression (2,d=5928) (**)
67544 109061779*2^35003-1 10545 p44 2014
Consecutive primes arithmetic progression (1,d=5928)
67547 350049825*2^35000+7703 10545 c4 2014
ECPP, consecutive primes arithmetic progression (3,d=3852) (**)
67548 350049825*2^35000+3851 10545 c4 2014
ECPP, consecutive primes arithmetic progression (2,d=3852) (**)
67549 350049825*2^35000-1 10545 p44 2014
Consecutive primes arithmetic progression (1,d=3852)
67552 146462479*2^35001+8765 10545 c4 2013
ECPP, consecutive primes arithmetic progression (3,d=8766) (**)
67553 146462479*2^35001-1 10545 p44 2013
Consecutive primes arithmetic progression (2,d=8766)
67554 146462479*2^35001-8767 10545 c4 2013
ECPP, consecutive primes arithmetic progression (1,d=8766) (**)
67589 5110664609396115*2^34946-1 10536 p375 2014
Cunningham chain (4p+3)
67590 5110664609396115*2^34945-1 10536 p375 2014
Cunningham chain (2p+1)
67591 5110664609396115*2^34944-1 10535 p375 2014 Cunningham chain (p) 67607 primV(77841) 10496 x25 2005
Lucas primitive part (**)
67614 primU(55297) 10483 c8 2014
Fibonacci primitive part, ECPP (**)
67617 914546877*2^34774-1 10477 L983 2010
Cunningham chain (4p+3)
67618 914546877*2^34773-1 10477 L983 2010
Cunningham chain (2p+1)
67619 914546877*2^34772-1 10477 L983 2010 Cunningham chain (p) 67631 primA(219135) 10462 c8 2014
Lucas Aurifeuillian primitive part, ECPP (**)
67656 1288726869465789*2^34567+1 10421 p296 2014 Triplet (3) 67657 1288726869465789*2^34567-1 10421 p296 2014 Triplet (2) 67658 1288726869465789*2^34567-5 10421 c58 2014
ECPP, Triplet (1) (**)
67676 24029#+1 10387 C 1993 Primorial (**) 67702 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP (**) 67721 V(49391)/298414424560419239 10305 c8 2013
Lucas cofactor, ECPP (**)
67739 23801#+1 10273 C 1993 Primorial (**) 67840 primV(77292) 10112 c74 2014
Lucas primitive part, ECPP (**)
67849 p(82479677) 10109 c59 2012
Partitions, ECPP (**)
67858 p(82352631) 10101 c56 2012
Partitions, ECPP (**)
67868 81505264551807*2^33444+5 10082 c58 2012 Triplet (3), ECPP 67869 81505264551807*2^33444+1 10082 p296 2012 Triplet (2) 67870 81505264551807*2^33444-1 10082 p296 2012 Triplet (1) 67876 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP (**) 67898 2072644824759*2^33333+5 10047 FE5 2008
Triplet (3), ECPP (**)
67899 2072644824759*2^33333+1 10047 L645 2008 Triplet (2) 67900 2072644824759*2^33333-1 10047 L645 2008 Triplet (1) 68232 p(80036992) 9958 c46 2011 Partitions, ECPP 68261 primV(75126) 9901 c8 2014
Lucas primitive part, ECPP (**)
68343 32469*2^32469+1 9779 MM 1997 Cullen 68345 (2^32531-1)/(65063*25225122959) 9778 c60 2012
Mersenne cofactor, ECPP (**)
68371 8073*2^32294+1 9726 MM 1997 Cullen 68396 primV(67690) 9691 c8 2014
Lucas primitive part, ECPP (**)
68429 primV(73746) 9631 c8 2014
Lucas primitive part, ECPP (**)
68449 V(45953)/4561241750239 9591 c56 2012
Lucas cofactor, ECPP (**)
68496 E(3308)/39308792292493140803643373186476368389461245
9516 c8 2014 Euler irregular, ECPP (**)
68506 Phi(5161,-100) 9505 c47 2012 Unique, ECPP (**) 68572 primV(56360) 9417 c8 2014
Lucas primitive part, ECPP (**)
68598 primV(67359) 9385 c8 2014
Lucas primitive part, ECPP (**)
68609 primA(196035) 9359 c8 2014
Lucas Aurifeuillian primitive part, ECPP (**)
68663 V(44507) 9302 CH3 2005 Lucas number (**) 68766 V(43987)/175949 9188 c8 2014
Lucas cofactor, ECPP (**)
68818 primV(47647) 9129 c8 2014
Lucas primitive part, ECPP (**)
68819 p(67230446) 9126 c56 2011
Partitions, ECPP (**)
68837 primV(43931) 9094 c8 2014
Lucas primitive part, ECPP (**)
69035 U(43399)/470400609575881344601538056264109423291827366228494341196421
9010 c8 2013 Fibonacci cofactor, ECPP (**)
69049 576024045*2^29874+1 9002 p364 2014
Cunningham chain 2nd kind (4p-3)
69106 primU(44113) 8916 c8 2014
Fibonacci primitive part, ECPP (**)
69107 U(42829)/107130175995197969243646842778153077
8916 c8 2014 Fibonacci cofactor, ECPP (**)
69163 (2^29473-1)/(5613392570256862943*24876264677503329001)
8835 c59 2012 Mersenne cofactor, ECPP (**)
69189 primA(159165) 8803 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
69208 U(42043)/1681721 8780 c56 2012
Fibonacci cofactor, ECPP (**)
69291 (2^28771-1)/104726441 8653 c56 2012
Mersenne cofactor, ECPP (**)
69294 (2^28759-1)/226160777 8649 c60 2012
Mersenne cofactor, ECPP (**)
69382 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP (**) 69399 p(60016427) 8622 c46 2011 Partitions, ECPP 69566 Phi(4667,-100) 8593 c47 2009 Unique, ECPP (**) 69643 U(40763)/643247084652261620737 8498 c8 2013
Fibonacci cofactor, ECPP (**)
69763 primU(46711) 8367 c8 2013
Fibonacci primitive part, ECPP (**)
69840 V(39769)/18139109172816581 8295 c8 2013
Lucas cofactor, ECPP (**)
69847 2^27529-2^13765+1 8288 O 2000
Gaussian Mersenne norm 28
69851 primB(148605) 8282 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
69852 903445893*6^10628+5 8280 c67 2013 Triplet (3) (**) 69853 903445893*6^10628+1 8280 p364 2013 Triplet (2) 69854 903445893*6^10628-1 8280 p364 2013 Triplet (1) 69859 V(39607)/158429 8273 c46 2011
Lucas cofactor, ECPP (**)
69900 p(54534155) 8219 c56 2011
Partitions, ECPP (**)
69915 primB(103645) 8202 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
69931 379185609*2^27129-1 8176 L983 2009
Cunningham chain (4p+3)
69933 379185609*2^27128-1 8175 L983 2009
Cunningham chain (2p+1)
69934 379185609*2^27127-1 8175 L983 2009 Cunningham chain (p) 69937 primU(62373) 8173 c8 2013
Fibonacci primitive part, ECPP (**)
69945 primB(119945) 8165 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
69974 82659189*2^26999+1 8136 L983 2010
Cunningham chain 2nd kind (4p-3)
69977 173028555*2^26995+1 8135 L983 2010
Cunningham chain 2nd kind (4p-3)
69987 primB(99835) 8126 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
70021 primB(96545) 8070 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
70030 (2^26903-1)/1113285395642134415541632833178044793
8063 c55 2011 Mersenne cofactor, ECPP (**)
70061 p(52155970) 8037 c4 2014
Partitions, ECPP (**)
70064 p(52126820) 8035 c4 2014
Partitions, ECPP (**)
70065 p(52108003) 8034 c4 2014
Partitions, ECPP (**)
70078 p(51983878) 8024 c4 2014
Partitions, ECPP (**)
70079 p(51975657) 8023 c4 2014
Partitions, ECPP (**)
70085 p(51911300) 8018 c4 2014
Partitions, ECPP (**)
70099 18523#+1 8002 D 1989 Primorial (**) 70110 42989535*2^26545+1 7999 L983 2010
Cunningham chain 2nd kind (4p-3)
70128 primU(43121) 7975 c8 2013
Fibonacci primitive part, ECPP (**)
70145 6*Bern(3458)/28329084584758278770932715893606309
7945 c8 2013 Irregular, ECPP (**)
70153 164210699973*2^26328-1 7937 p158 2006
Cunningham chain (4p+3)
70155 164210699973*2^26327-1 7937 p158 2006
Cunningham chain (2p+1)
70156 164210699973*2^26326-1 7937 p158 2006 Cunningham chain (p) 70172 U(37987)/(16117960073*94533840409*1202815961509)
7906 c39 2012 Fibonacci cofactor, ECPP (**)
70216 U(37511) 7839 x13 2005
Fibonacci number (**)
70247 primB(145545) 7824 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
70269 V(37357)/20210113386303842894568629
7782 c8 2013 Lucas cofactor, ECPP (**)
70281 U(37217)/4466041 7771 c46 2011
Fibonacci cofactor, ECPP (**)
70293 -E(2762)/2670541 7760 c11 2004
Euler irregular, ECPP
70377 V(36779) 7687 CH3 2005 Lucas number (**) 70871 U(35999) 7523 p54 2001
Fibonacci number, cyclotomy (**)
70890 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP (**) 70981 V(35449) 7409 p12 2001 Lucas number 71115 V(35107)/525110138418084707309 7317 c8 2013
Lucas cofactor, ECPP (**)
71117 primA(161595) 7313 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
71217 U(34897)/4599458691503517435329 7272 c8 2013
Fibonacci cofactor, ECPP (**)
71240 V(34759)/27112021 7257 c33 2005
Lucas cofactor, ECPP (**)
71334 U(34807)/551750980997908879677508732866536453
7239 c8 2013 Fibonacci cofactor, ECPP (**)
71397 U(34607)/13088506284255296513 7213 c8 2013
Fibonacci cofactor, ECPP (**)
71434 Phi(9455,-10) 7200 c33 2005 Unique, ECPP (**) 71480 Phi(1479,-100000000) 7168 c47 2009 Unique, ECPP (**) 71499 primB(134415) 7163 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
71968 U(33997)/8119544695419968014626314520991088099382355441843013
7053 c8 2013 Fibonacci cofactor, ECPP (**)
72123 primU(48965) 7012 c8 2013
Fibonacci primitive part, ECPP (**)
72127 164084347*16229#+1 7009 p155 2009
Arithmetic progression (5,d=20333209*16229#)
72225 V(33353)/279902102741094707003083072429
6941 c8 2013 Lucas cofactor, ECPP (**)
72234 primA(82975) 6935 p54 2001
Lucas Aurifeuillian primitive part (**)
72245 23005*2^23005-1 6930 Y 1997 Woodall 72258 22971*2^22971-1 6920 Y 1997 Woodall 72264 2852851249*16001#/5+1 6913 p199 2008
Arithmetic progression (5,d=2653152*16001#)
72269 2399771561*16001#/5+1 6913 p199 2008
Arithmetic progression (5,d=86574302*16001#)
72271 1638535589*16001#/5+1 6913 p199 2008
Arithmetic progression (5,d=2003735*16001#)
72278 Phi(2405,-10000) 6912 c47 2009 Unique, ECPP (**) 72348 15877#-1 6845 CD 1992 Primorial (**) 72353 Phi(10887,10) 6841 c33 2005 Unique, ECPP (**) 72368 primU(58773) 6822 c8 2013
Fibonacci primitive part, ECPP (**)
72436 primU(40295) 6737 p12 2001
Fibonacci primitive part
72510 U(32077)/153087505413829037510511957221947361
6669 c8 2013 Fibonacci cofactor, ECPP (**)
72537 6*Bern(2974)/19622040971147542470479091157507
6637 c8 2013 Irregular, ECPP (**)
72762 primA(123405) 6502 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
72817 1797706581*2^21355-1 6438 L100 2012
Cunningham chain (4p+3)
72819 1797706581*2^21354-1 6438 L100 2012
Cunningham chain (2p+1)
72820 1797706581*2^21353-1 6438 L100 2012 Cunningham chain (p) 72831 U(30757) 6428 p54 2001
Fibonacci number, cyclotomy (**)
72837 V(31547)/2214098083841440850624929865754025869183488666508931309344798\
2330346227824686184228977375762399380559492255026457207263132495525655\ 34024996670996378968020508259098756301 6425 c8 2013 Lucas cofactor, ECPP (**)
72879 U(30727)/2281521813578534245193 6400 c8 2013
Fibonacci cofactor, ECPP (**)
72883 U(30671)/1141737296775689 6395 c41 2005
Fibonacci cofactor, ECPP (**)
73040 Phi(7357,-10) 6301 c33 2004 Unique, ECPP (**) 73103 Phi(6437,10) 6240 c47 2008 Unique, ECPP (**) 73115 (2^20887-1)/(694257144641*3156563122511*28533972487913*189380444251383\
6092687) 6229 c4 2009 Mersenne cofactor, ECPP (**)
73176 primA(118275) 6170 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
73291 primU(43653) 6082 CH7 2010
Fibonacci primitive part (**)
73610 primU(70455) 6019 c8 2013
Fibonacci primitive part, ECPP (**)
73616 E(2220)/392431891068600713525 6011 c8 2013
Euler irregular, ECPP (**)
73646 primB(83825) 5994 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
73708 primU(43359) 5939 c8 2013
Fibonacci primitive part, ECPP (**)
73710 -E(2202)/53781055550934778283104432814129020709
5938 c8 2013 Euler irregular, ECPP (**)
73749 primU(28667) 5914 c8 2013
Fibonacci primitive part, ECPP (**)
73818 U(28277)/347428330081374457 5892 c8 2013
Fibonacci cofactor, ECPP (**)
73841 13649#+1 5862 D 1987 Primorial (**) 73855 55339803*2^19402+1 5849 L983 2009
Cunningham chain 2nd kind (4p-3)
73889 primB(104385) 5816 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
73911 V(27827)/3579579016301 5803 c4 2011
Lucas cofactor, ECPP (**)
74021 274386*Bern(2622)/8518594882415401157891061256276973722693
5701 c8 2013 Irregular, ECPP (**)
74023 primB(72505) 5699 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
74034 18885*2^18885-1 5690 K 1987 Woodall 74176 1963!-1 5614 CD 1992 Factorial (**) 74181 13033#-1 5610 CD 1992 Primorial (**) 74216 289*2^18502+1 5573 K 1984
Cullen, generalized Fermat
74280 U(26591)/1929661069931436974692472737757606381
5521 c8 2013 Fibonacci cofactor, ECPP (**)
74306 primU(39489) 5502 c8 2013
Fibonacci primitive part, ECPP (**)
74318 primU(27721) 5485 c8 2013
Fibonacci primitive part, ECPP (**)
74322 V(26309)/42316339086094085101 5479 c8 2013
Lucas cofactor, ECPP (**)
74433 E(2028)/11246153954845684745 5412 c55 2011
Euler irregular, ECPP (**)
74696 V(25873)/34396575615094965590217427573609664640790259
5364 c8 2013 Lucas cofactor, ECPP (**)
74758 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\
6621720796146291948744439) 5354 c63 2013 Irregular ECPP (**)
74829 U(25561) 5342 p54 2001
Fibonacci number (**)
74867 V(25763)/92864275685263243511877732271066626563444291249
5338 c8 2013 Lucas cofactor, ECPP (**)
74886 V(25577)/147374713548027019 5329 c4 2011
Lucas cofactor, ECPP (**)
74926 primB(65305) 5298 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
74935 primB(63235) 5287 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
74948 (2^17683-1)/(234000819833373807217*62265855698776681155719328257)
5274 c4 2009 Mersenne cofactor, ECPP (**)
74965 -E(1990)/8338208577950624722417016286765473477033741642105671913
5258 c8 2013 Euler irregular, ECPP (**)
75186 primB(108465) 5177 c8 2013
Lucas Aurifeuillian primitive part, ECPP (**)
75277 (51803036889*205881*4001#*(205881*4001#+1)+210)*(205881*4001#-1)/35+7
5132 p179 2007 Arithmetic progression (5,d=(681402540*205881*4001#*(205881*4001#+1)*(205881*4001#-1)/35))
75371 (2^17029-1)/418879343 5118 c8 2006
Mersenne cofactor, ECPP (**)
75499 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 76258 11549#+1 4951 D 1986 Primorial (**) 76683 V(23663)/102462573963822806622784417315446994815407287584779
4896 c8 2013 Lucas cofactor, ECPP (**)
76772 E(1840)/31237282053878368942060412182384934425
4812 c4 2011 Euler irregular, ECPP (**)
76806 7911*2^15823-1 4768 K 1987 Woodall 76824 V(22811)/(2469062641*84961206854418761)
4741 c8 2004 Lucas cofactor, ECPP
76862 primU(25493) 4695 c8 2007
Fibonacci primitive part, ECPP (**)
77203 Phi(6685,-10) 4560 c8 2003 Unique, ECPP (**) 77391 E(1736)/(55695515*75284987831*3222089324971117)
4498 c4 2004 Euler irregular, ECPP (**)
77414 U(21577)/(8626362776257*608114436652075009)
4479 c8 2004 Fibonacci cofactor, ECPP (**)
77439 primU(34593) 4444 c8 2007
Fibonacci primitive part, ECPP (**)
77452 2^14699+2^7350+1 4425 O 2000
Gaussian Mersenne norm 27
77461 primU(38181) 4414 c8 2007
Fibonacci primitive part, ECPP (**)
77511 (2^14561-1)/8074991336582835391 4365 c8 2004
Mersenne cofactor, ECPP (**)
77512 (2^14621-1)/(1958650799081*9787919624201558678734079)
4365 c4 2008 Mersenne cofactor, ECPP (**)
77516 Phi(3273,-100) 4361 c8 2003 Unique, ECPP (**) 77518 (2^14479+1)/3 4359 c4 2004
Generalized Lucas number, Wagstaff, ECPP (**)
77691 U(20749)/40143391315257666998313330569
4308 c8 2013 Fibonacci cofactor, ECPP (**)
77731 primU(21053) 4274 c8 2007
Fibonacci primitive part, ECPP (**)
77738 primU(31209) 4264 c8 2007
Fibonacci primitive part, ECPP (**)
77799 276474*Bern(2030)/(19426085*24191786327543)
4200 c8 2003 Irregular, ECPP (**)
77930 U(19777)/38707773384498015680717776815690169
4099 c8 2013 Fibonacci cofactor, ECPP (**)
77931 U(19709)/5442947509995472691549 4097 c8 2013
Fibonacci cofactor, ECPP (**)
77964 V(19469) 4069 x25 2002
Lucas number, cyclotomy, APR-CL assisted (**)
78007 1477!+1 4042 D 1984 Factorial (**) 78331 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP (**) 78349 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP (**) 78437 -197676570*18851280661*Bern(1836)/(59789*3927024469727)
3734 c8 2003 Irregular, ECPP (**)
78439 12379*2^12379-1 3731 K 1984 Woodall 78440 (2^12391+1)/3 3730 M 1996
Generalized Lucas number, Wagstaff
78527 (2^12451-1)/(4980401*15289230353*1143390212315192593598809)
3708 c4 2008 Mersenne cofactor, ECPP (**)
78555 -E(1466)/167900532276654417372106952612534399239
3682 c8 2013 Euler irregular, ECPP (**)
78563 E(1468)/(95*217158949445380764696306893*597712879321361736404369071)
3671 c4 2003 Euler irregular, ECPP (**)
78586 642*Bern(1802)/15720728189 3641 c8 2003 Irregular, ECPP (**) 78704 (2^11813-1)/(70879*207971134271377)
3537 c8 2002 Mersenne cofactor, ECPP (**)
78810 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) (**) 78811 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) (**) 78812 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) (**) 78813 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 78866 305136484659*2^11399+7 3443 c67 2013 Quadruplet (4) (**) 78867 305136484659*2^11399+5 3443 c67 2013 Quadruplet (3) (**) 78868 305136484659*2^11399+1 3443 p364 2013 Quadruplet (2) 78869 305136484659*2^11399-1 3443 p364 2013 Quadruplet (1) 79653 (2^11279+1)/3 3395 PM 1998
Cyclotomy, generalized Lucas number, Wagstaff (**)
79852 722047383902589*2^11111+7 3360 c26 2013 Quadruplet (4) 79853 722047383902589*2^11111+5 3360 c26 2013 Quadruplet (3) 79854 722047383902589*2^11111+1 3360 L165 2013 Quadruplet (2) 79855 722047383902589*2^11111-1 3360 L165 2013 Quadruplet (1) 79940 (2^11117-1)/3581964369642706082212218539709275199722225571968754426223\
37153 3284 c4 2011 Mersenne cofactor, ECPP (**)
79987 (2^10691+1)/3 3218 c4 2004
Generalized Lucas number, Wagstaff, ECPP (**)
80044 (2^10501+1)/3 3161 M 1996
Generalized Lucas number, Wagstaff (**)
80160 2^10141+2^5071+1 3053 O 2000
Gaussian Mersenne norm 26
80219 (2^10211-1)/306772303457009724362047724636324707614338377
3030 c4 2010 Mersenne cofactor, ECPP (**)
80225 43697976428649*2^9999+7 3024 c58 2012 Quadruplet (4) 80226 43697976428649*2^9999+5 3024 c58 2012 Quadruplet (3) 80227 43697976428649*2^9999+1 3024 p349 2012 Quadruplet (2) 80228 43697976428649*2^9999-1 3024 p349 2012 Quadruplet (1) 80231 (2^10169-1)/10402314702094700470118039921523041260063
3022 c8 2002 Mersenne cofactor, ECPP
80235 62037039993*7001#+7811555813 3021 x38 2013
Consecutive primes arithmetic progression (4,d=30), ECPP (**)
80239 50946848056*7001#+7811555813 3021 x38 2013
Consecutive primes arithmetic progression (4,d=30), ECPP (**)
80246 26997933312*7001#+7811555753 3020 x38 2013
Consecutive primes arithmetic progression (4,d=30), ECPP (**)
80250 25506692100*7001#+7811555783 3020 x38 2013
Consecutive primes arithmetic progression (4,d=30), ECPP (**)
80254 V(14449) 3020 DK 1995 Lucas number 80258 3124777373*7001#+1 3019 p155 2012
Arithmetic progression (7,d=481789017*7001#)
80259 2996180304*7001#+1 3019 p155 2012
Arithmetic progression (6,d=46793757*7001#)
80261 2946259686*7001#+1 3019 p155 2012
Arithmetic progression (6,d=313558156*7001#)
80262 2915000572*7001#+1 3019 p155 2012
Arithmetic progression (6,d=3093612*7001#)
80266 2903168860*7001#+1 3019 p155 2012
Arithmetic progression (6,d=370654742*7001#)
80270 2884761225*7001#+1 3019 p155 2012
Arithmetic progression (6,d=46112185*7001#)
80775 U(14431) 3016 p54 2001
Fibonacci number (**)
81005 (2^10007-1)/(14477908246561*136255313*10368448917257)
2979 c8 2002 Mersenne cofactor, ECPP
81122 V(13963) 2919 c11 2002 Lucas number, ECPP 81161 (2^9697-1)/(724126946527*19092282046942032847)
2888 c8 2002 Mersenne cofactor, ECPP
81184 9531*2^9531-1 2874 K 1984 Woodall 81217 9992783016*6599#-1 2836 p295 2011
Cunningham chain (8p+7)
81229 -E(1174)/50550511342697072710795058639332351763
2829 c8 2013 Euler irregular, ECPP (**)
81245 6569#-1 2811 D 1992 Primorial 81893 -E(1078)/361898544439043 2578 c4 2002
Euler irregular, ECPP (**)
81904 198267970563*6007#+7811555753 2575 x38 2013
Consecutive primes arithmetic progression (4,d=30), ECPP (**)
82133 V(12251) 2561 p54 2001 Lucas number (**) 82807 46359065729523*2^8258+7 2500 c26 2011 Quadruplet (4) 82808 46359065729523*2^8258+5 2500 c26 2011 Quadruplet (3) 82809 46359065729523*2^8258+1 2500 L165 2011 Quadruplet (2) 82810 46359065729523*2^8258-1 2500 L165 2011 Quadruplet (1) 82885 974!-1 2490 CD 1992 Factorial 83366 E(1028)/(6415*56837916301577) 2433 c4 2002
Euler irregular, ECPP (**)
83594 E(1004)/(579851915*80533376783) 2364 c4 2002
Euler irregular, ECPP (**)
83605 953477584*5501#-1 2355 p133 2005
Cunningham chain (8p+7)
83831 7755*2^7755-1 2339 K 1984 Woodall 84353 -2090369190*Bern(1236)/(103*939551962476779*157517441360851951)
2276 c4 2002 Irregular, ECPP (**)
84375 -36870*Bern(1228)/1043706675925609 2272 c4 2002 Irregular, ECPP (**) 84595 V(10691) 2235 DK 1995 Lucas number 85161 872!+1 2188 D 1983 Factorial 85997 5045589688*4933#+1 2106 p295 2010
Cunningham chain 2nd kind (8p-7)
86325 -E(902)/(9756496279*314344516832998594237)
2069 c4 2002 Euler irregular, ECPP (**)
86480 -E(886)/68689 2051 c4 2002
Euler irregular, ECPP (**)
86590 4787#+1 2038 D 1984 Primorial 86858 U(9677) 2023 c2 2000
Fibonacci number, ECPP
88694 6611*2^6611+1 1994 K 1984 Cullen 88765 4583#-1 1953 D 1992 Primorial 88787 U(9311) 1946 DK 1995 Fibonacci number 88807 4547#+1 1939 D 1984 Primorial 89056 4297#-1 1844 D 1992 Primorial 89106 125848198864*4253#+1 1829 p199 2010
Cunningham chain 2nd kind (8p-7)
89107 113419228920*4253#+1 1829 p199 2010
Cunningham chain 2nd kind (8p-7)
89110 45912427272*4253#+1 1829 p199 2010
Cunningham chain 2nd kind (8p-7)
89355 11628008104*4127#+1 1770 p133 2005
Cunningham chain 2nd kind (8p-7)
89360 V(8467) 1770 c2 2000
Lucas number, ECPP (**)
89443 4093#-1 1750 CD 1992 Primorial 89455 5795*2^5795+1 1749 K 1984 Cullen 89461 (2^5807+1)/3 1748 PM 1998
Cyclotomy, generalized Lucas number, Wagstaff (**)
89840 6*Bern(998)/(11511758102983*55034215982714323*70834556505031411*386984\
89087506303607099*4712129605357293035277301907*36242949063949967876127\ 8968817) 1640 c62 2013 Irregular,ECPP (**)
89913 V(7741) 1618 DK 1995 Lucas number 89971 20438086160*3733#-1 1605 p295 2010
Cunningham chain (8p+7)
89975 17758152104*3733#-1 1605 p295 2010
Cunningham chain (8p+7)
89989 83*2^5318-1 1603 K 1984 Woodall 91202 163252711105*3371#/2+4 1443 c67 2014 Quintuplet (5) (**) 91203 163252711105*3371#/2+2 1443 c67 2014 Quintuplet (4) (**) 91204 163252711105*3371#/2-2 1443 c67 2014 Quintuplet (3) (**) 91205 163252711105*3371#/2-4 1443 c67 2014 Quintuplet (2) (**) 91206 163252711105*3371#/2-8 1443 c67 2014 Quintuplet (1) (**) 91486 4713*2^4713+1 1423 K 1984 Cullen 91560 -54570*Bern(848)/(428478023*5051145078213134269)
1418 c4 2002 Irregular, ECPP (**)
91750 460226463*3301#+1 1402 p252 2010
Arithmetic progression (7,d=30017636*3301#) (**)
91761 9039840848561*3299#/35+7 1401 c67 2013 Quintuplet (5) (**) 91762 9039840848561*3299#/35+5 1401 c67 2013 Quintuplet (4) (**) 91763 9039840848561*3299#/35+1 1401 p364 2013 Quintuplet (3) 91764 9039840848561*3299#/35-1 1401 p364 2013 Quintuplet (2) 91765 9039840848561*3299#/35-5 1401 c67 2013 Quintuplet (1) (**) 91877 E(676)/878618128969410121818976030235415670049335313139115048927177891\
58174298202475475590955674162377015 1391 c8 2013 Euler irregular, ECPP (**)
92259 3229#+1 1368 D 1984 Primorial 92291 580182204072*3203#-1 1366 p295 2011
Cunningham chain (8p+7)
92867 -E(638)/(7235862947323*11411779188663863*526900327479624797)
1343 c4 2002 Euler irregular, ECPP (**)
93192 1233917739*3121#+1 1335 p155 2010
Arithmetic progression (7,d=5893725*3121#)
93466 1461401630*3109#+1 1328 p252 2009
Arithmetic progression (7,d=35777939*3109#) (**)
94016 138*Bern(814)/(28409964671*335055893*351085907*520460183*30348030379*1\
7043083582983) 1311 c4 2002 Irregular, ECPP (**)
94889 699549860111847*2^4244+11 1293 c26 2013 Quintuplet (5) 94890 699549860111847*2^4244+7 1293 c26 2013 Quintuplet (4) 94891 699549860111847*2^4244+5 1293 c26 2013 Quintuplet (3) 94892 699549860111847*2^4244+1 1293 p371 2013 Quintuplet (2) 94893 699549860111847*2^4244-1 1293 p371 2013 Quintuplet (1) 94968 833000864*3011#+1 1290 p155 2006
Arithmetic progression (7,d=114858412*3011#)
96681 546!-1 1260 D 1992 Factorial 97966 V(5851) 1223 DK 1995 Lucas number 98529 406463527990*2801#+1633050403 1209 x38 2013
Consecutive primes arithmetic progression (5,d=30)
99784 68002763264*2749#-1 1185 p35 2012
Cunningham chain (16p+15)
101995 E(576)/103578407399870807786503857073455806041088176158903345179750769\
398899240791530780628185 1143 c8 2013 Euler irregular, ECPP (**)
102472 1290733709840*2677#+1 1141 p295 2011
Cunningham chain 2nd kind (16p-15)
102989 U(5387) 1126 WM 1990 Fibonacci number 103480 720128166480*2621#+1 1117 p199 2010
Cunningham chain 2nd kind (16p-15) (**)
103489 566650659276*2621#+1615853 1117 x38 2013 Quintuplet (5) 103490 566650659276*2621#+1615849 1117 x38 2013 Quintuplet (4) 103491 566650659276*2621#+1615847 1117 x38 2013 Quintuplet (3) 103492 566650659276*2621#+1615843 1117 x38 2013 Quintuplet (2) 103493 566650659276*2621#+1615841 1117 x38 2013 Quintuplet (1) 103495 554729409262*2621#+1615853 1117 x38 2013 Quintuplet (5) 103496 554729409262*2621#+1615849 1117 x38 2013 Quintuplet (4) 103497 554729409262*2621#+1615847 1117 x38 2013 Quintuplet (3) 103498 554729409262*2621#+1615843 1117 x38 2013 Quintuplet (2) 103499 554729409262*2621#+1615841 1117 x38 2013 Quintuplet (1) 105852 993530619517*2503#+1633050373 1073 x38 2013
Consecutive primes arithmetic progression (5,d=30)
105866 495690450643*2503#+1633050403 1072 x38 2013
Consecutive primes arithmetic progression (5,d=30)
105892 150822742857*2503#+1633050373 1072 x38 2013
Consecutive primes arithmetic progression (5,d=30)
105904 94807777362*2503#+1633050373 1072 x38 2013
Consecutive primes arithmetic progression (5,d=30)
106287 (2^3539+1)/3 1065 M 1989
First titanic by ECPP, generalized Lucas number, Wagstaff
106504 -E(510) 1062 c4 2002
Euler irregular, ECPP (**)
106762 2968802755*2459#+1 1057 p155 2009
Arithmetic progression (8,d=359463429*2459#)
106956 469!-1 1051 BC 1981 Factorial 107587 6179783529*2411#+1 1037 p102 2003
Arithmetic progression (8,d=176836494*2411#)
107920 R(1031) 1031 WD 1985 Repunit (**) 108261 51800236080*2377#-1 1017 p295 2011
Cunningham chain (16p+15)
108342 418059269664*2371#+1 1015 p308 2011
Cunningham chain 2nd kind (16p-15)
108367 116040452086*2371#+1 1014 p308 2012
Arithmetic progression (9,d=6317280828*2371#)
108368 115248484057*2371#+1 1014 p308 2013
Arithmetic progression (8,d=7327002535*2371#)
108370 113236255068*2371#+1 1014 p308 2013
Arithmetic progression (8,d=6601354956*2371#)
108371 112929231161*2371#+1 1014 p308 2013
Arithmetic progression (8,d=6982118533*2371#)
108517 97336164242*2371#+1 1014 p308 2013
Arithmetic progression (9,d=6350457699*2371#)
108641 93537753980*2371#+1 1014 p308 2013
Arithmetic progression (9,d=3388165411*2371#)
108673 92836168856*2371#+1 1014 p308 2013
Arithmetic progression (9,d=127155673*2371#)
110286 69318339141*2371#+1 1014 p308 2011
Arithmetic progression (9,d=1298717501*2371#)
111473 22260095095904*2347#-1 1006 p364 2014
Cunningham chain (16p+15)
112593 3885399969056*2347#-1 1006 p364 2014
Cunningham chain (16p+15)
112897 1901797841760*2347#-1 1005 p364 2014
Cunningham chain (16p+15)
113540 V(4793) 1002 DK 1995 Lucas number 113583 V(4787) 1001 DK 1995 Lucas number
-------------------------------- ------- ----- ---- --------------
Vincent Flood © 1996-2014 (all rights reserved)