Difference between revisions of "/vg/ League Team Placement"
(→Legacy) |
|||
Line 138: | Line 138: | ||
<br> | <br> | ||
==Multiplication Table== | ==Multiplication Table== | ||
{| class="wikitable" width=25% | {| class="wikitable" width=25% | ||
|- | |- | ||
Line 202: | Line 201: | ||
|- | |- | ||
| [[/vg/ League 11|VGL 11]] | | [[/vg/ League 11|VGL 11]] | ||
| +0 | |||
| x1 | |||
|- | |||
| [[/vg/ League 12|VGL 12]] | |||
| +0 | | +0 | ||
| x1 | | x1 | ||
Line 213: | Line 216: | ||
! style="background-color:#cdcdcd;" | 2nd Place | ! style="background-color:#cdcdcd;" | 2nd Place | ||
! style="background-color:#cdcdcd;" | 3rd Place | ! style="background-color:#cdcdcd;" | 3rd Place | ||
|- | |||
| VGL 12 | |||
| align="left" | {{team away|hsg}} | |||
| align="left" | {{team away|mbg}} | |||
| align="left" | {{team away|mcg}} | |||
|- | |- | ||
| VGL 11 | | VGL 11 | ||
Line 266: | Line 274: | ||
! style="background-color:#cdcdcd;" | 2nd Place | ! style="background-color:#cdcdcd;" | 2nd Place | ||
! style="background-color:#cdcdcd;" | 3rd Place | ! style="background-color:#cdcdcd;" | 3rd Place | ||
|- | |||
| VGL 12 | |||
| align="left" | {{team away|lzg}} | |||
| align="left" | {{team away|hsg}} | |||
| align="left" | {{team away|xcg}} | |||
|- | |- | ||
| VGL 11 | | VGL 11 |
Revision as of 15:11, 2 October 2019
|
On this page is a collection of every /vg/ League team's placement in every /vg/ League. For the Placement Leaderboards, only teams that have participated in 3+ Leagues are considered. Qualifiers do NOT count as their own separate Leagues.
Due to varying numbers of teams participating each season, each placement is "normalized" to match what its position would be if the tournament in question had the same number of participants as the League with the most participants. This is so I don't have to do division, only multiplication, and so no one has a "0.xx" finish, which isn't logically possible.
Multiplication Table
League | Addition | Multiplication |
---|---|---|
VGL 1 | +0 | x2.667 |
VGL 2 | +0 | x2 |
VGL 3 | +0 | x2 |
VGL 4 | +0 | x1.5 |
VGL 5 | +0 | x1.5 |
VGL 6Q | +24 | x1.333 |
VGL 6 | +0 | x1.333 |
VGL 7Q | +24 | x1.2 |
VGL 7 | +0 | x1.2 |
VGL 8Q | +24 | x1.2 |
VGL 8 | +0 | x1.2 |
VGL 9Q | +24 | x1.2 |
VGL 9 | +0 | x1.2 |
VGL X | +0 | x1 |
VGL 11 | +0 | x1 |
VGL 12 | +0 | x1 |
Team of the Period
Similar to the Rankings, every period the Top 3 teams will be taken down and recorded here.
Modern
Period | 1st Place | 2nd Place | 3rd Place |
---|---|---|---|
VGL 12 | ![]() |
![]() |
![]() |
VGL 11 | ![]() |
![]() |
![]() |
VGL X | ![]() |
![]() |
![]() |
VGL 9 | ![]() |
![]() |
![]() |
VGL 8 | ![]() |
![]() |
![]() |
VGL 7 | ![]() |
![]() |
![]() |
VGL 6 | ![]() |
![]() |
![]() |
VGL 5 | ![]() |
![]() |
![]() |
VGL 4 | ![]() |
![]() |
![]() |
VGL 3 | ![]() |
![]() |
![]() |
Legacy
Period | 1st Place | 2nd Place | 3rd Place |
---|---|---|---|
VGL 12 | ![]() |
![]() |
![]() |
VGL 11 | ![]() |
![]() |
![]() |
VGL X | ![]() |
![]() |
![]() |
VGL 9 | ![]() |
![]() |
![]() |
VGL 8 | ![]() |
![]() |
![]() |
VGL 7 | ![]() |
![]() |
![]() |
VGL 6 | ![]() |
![]() |
![]() |
VGL 5 | ![]() |
![]() |
![]() |
VGL 4 | ![]() |
![]() |
![]() |
VGL 3 | ![]() |
![]() |
![]() |
Placements
Note: Fuckhuge table that's hard to read
Team | VGL 1 | VGL 2 | VGL 3 | VGL 4 | VGL 5 | VGL 6Q | VGL 6 | VGL 7Q | VGL 7 | VGL 8Q | VGL 8 | VGL 9Q | VGL 9 | VGL X | VGL 11 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
X | X | X | 22.5 | 21 | X | 7.998 | X | 9.6 | X | 14.4 | X | 34.8 | 12 | X | 17.471 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | 42 | X | 36 | X | 39 |
![]() |
X | X | 2 | 13.5 | 22.5 | X | 31.992 | X | 4.8 | X | 21.6 | X | X | X | X | 16.065 |
![]() |
X | X | X | 37.5 | 34.5 | X | X | X | X | X | X | X | X | X | X | 36 |
![]() |
5.334 | 16 | 26 | 45 | X | X | X | 46.8 | X | X | X | X | X | X | X | 27.827 |
![]() |
X | X | X | X | 33 | X | 10.664 | X | 33.6 | X | 38.4 | 40.8 | X | 38 | X | 32.411 |
![]() |
X | X | X | X | X | X | X | X | X | 39.6 | X | 37.2 | 31.2 | 20 | X | 32 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | X | X | 41 | X | 41 |
![]() |
X | X | X | X | X | 34.658 | 22.661 | X | 27.6 | X | 25.2 | X | 1.2 | 43 | X | 25.72 |
![]() |
X | X | X | X | X | 46.655 | X | X | X | X | X | X | X | X | X | 46.655 |
![]() |
X | X | X | X | X | 39.99 | 21.328 | X | X | X | X | X | X | X | X | 30.659 |
![]() |
X | 36 | X | X | X | X | X | X | X | X | X | X | X | X | X | 36 |
![]() |
X | 26 | X | X | X | X | X | X | X | X | X | X | X | X | X | 26 |
![]() |
X | X | X | X | 34.5 | X | X | X | X | X | X | X | X | X | X | 34.5 |
![]() |
X | 34 | 18 | 40.5 | X | X | X | X | X | 38.4 | 27.6 | X | 21.6 | 24 | X | 29.157 |
![]() |
X | X | 18 | 19.5 | X | X | X | X | X | X | X | X | X | X | X | 18.75 |
![]() |
37.338 | 40 | X | 43.5 | X | X | X | X | X | X | X | X | X | 27 | X | 36.96 |
![]() |
X | 28 | X | X | X | X | X | X | X | X | X | X | X | X | X | 28 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | 33.6 | 33.6 | 14 | X | 27.067 |
![]() |
X | X | X | X | X | 33.325 | 14.663 | X | 1.2 | X | X | 32.4 | 16.8 | X | X | 19.663 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | X | X | 44 | X | 44 |
![]() |
X | X | 18 | 16.5 | X | X | X | X | X | X | X | X | X | X | X | 17.25 |
![]() |
X | X | X | X | X | X | X | X | X | 42 | X | 38.4 | 12 | 31 | X | 30.85 |
![]() |
24 | 2 | 36 | 1.5 | 31.5 | X | 42.656 | X | X | X | X | X | X | X | X | 29.193 |
![]() |
X | 46 | 18 | 19.5 | 48 | X | 19.995 | X | 20.4 | X | 30 | X | 26.4 | 42 | X | 30.033 |
![]() |
X | X | 26 | X | 12 | X | 5.332 | X | 7.2 | X | 14.4 | X | 13.2 | 3 | X | 11.59 |
![]() |
2.667 | 48 | X | 18 | 27 | X | X | X | X | X | X | X | X | X | X | 23.917 |
![]() |
X | X | X | X | X | X | X | X | X | X | 44.4 | X | X | X | X | 44.4 |
![]() |
32.004 | 30 | 32 | 33 | 43.5 | X | 25.327 | X | 27.6 | X | 34.8 | X | 34.8 | 22 | X | 31.503 |
![]() |
X | X | X | X | 1.5 | 38.657 | 9.331 | X | 30 | X | 36 | 34.8 | 24 | 11 | X | 23.161 |
![]() |
8.001 | X | X | 25.5 | 19.5 | X | 23.994 | X | 37.2 | 34.8 | 26.4 | X | 7.2 | 2 | X | 20.511 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | 39.6 | X | 15 | X | 27.3 |
![]() |
X | X | X | X | X | 35.991 | 38.657 | 34.8 | 18 | X | 24 | X | 20.4 | 16 | X | 26.835 |
![]() |
X | X | X | X | X | X | X | 42 | X | 33.6 | 33.6 | X | X | 19 | X | 32.05 |
![]() |
X | X | X | X | X | 34.658 | 6.665 | X | X | X | X | X | X | X | X | 20.662 |
![]() |
18.669 | 20 | 30 | 42 | 16.5 | X | 11.7 | X | 15.6 | X | 6 | X | 2.4 | 47 | X | 20.987 |
![]() |
X | 42 | X | X | X | 42.656 | 41.323 | 31.2 | 31.2 | X | 31.2 | X | 10.8 | 38 | X | 33.547 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | TBD |
![]() |
X | X | X | 3 | X | X | 37.5 | X | 3.6 | X | 6 | X | 4.8 | 8 | X | 10.483 |
![]() |
16.002 | 22 | 10 | X | X | X | X | X | X | X | X | X | X | X | X | 16.001 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | 43.2 | X | 25 | X | 34.1 |
![]() |
X | X | X | X | 28.5 | X | 13.33 | X | X | X | X | X | X | X | X | 20.915 |
![]() |
10.668 | X | X | X | 3 | X | 35.991 | X | 13.2 | X | 6 | X | 19.2 | 48 | X | 17.668 |
![]() |
29.337 | 38 | 46 | 36 | 4.5 | X | 39.99 | X | X | X | X | X | X | X | X | 32.305 |
![]() |
X | X | X | X | 45 | X | 30.659 | X | 38.4 | X | X | X | X | X | X | 38.02 |
![]() |
X | X | X | X | 30 | X | 15.996 | X | 25.2 | X | 1.2 | X | 27.6 | 40 | X | 23.333 |
![]() |
34.671 | 12 | 44 | 10.5 | 7.5 | X | 27.933 | X | 24 | X | 4.8 | X | 32.4 | X | X | 21.978 |
![]() |
X | X | X | X | X | X | X | 43.2 | 10.8 | X | 2.4 | X | 9.6 | 18 | X | 16.8 |
![]() |
X | X | X | 46.5 | X | X | X | X | X | 32.4 | 10.8 | X | 25.2 | 9 | X | 24.78 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | X | X | 4 | X | 4 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | X | X | 5 | X | 5 |
![]() |
X | 8 | 38 | 48 | 13.5 | X | 18.662 | X | X | X | X | X | X | X | X | 25.232 |
![]() |
X | X | X | 24 | X | 43.989 | X | 36 | 36 | 31.2 | 22.8 | X | 38.4 | 34 | X | 33.299 |
![]() |
X | X | X | X | 39 | X | 37.324 | X | 16.8 | X | X | X | X | X | X | 31.041 |
![]() |
X | X | X | 34.5 | 46.5 | X | X | X | X | X | X | X | X | X | X | 40.5 |
![]() |
21.336 | X | X | 9 | 40.5 | X | X | X | X | X | X | X | X | X | X | 23.612 |
![]() |
42.672 | 32 | 8 | 6 | 15 | X | 29.326 | X | 34.8 | 36 | 13.2 | X | 18 | 46 | X | 25.545 |
![]() |
X | 6 | X | 27 | 42 | X | X | X | X | X | X | X | X | X | X | 25 |
![]() |
X | X | 42 | X | X | X | X | 32.4 | 26.4 | X | 18 | X | 37.2 | 29 | X | 30.833 |
![]() |
X | X | X | X | X | X | X | 40.8 | X | 37.2 | 8.4 | X | X | X | X | 28.8 |
![]() |
X | 4 | 12 | X | X | X | X | X | X | X | X | X | X | X | X | 8 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | 44.4 | X | 32 | X | 38.2 |
![]() |
X | X | X | X | X | X | X | X | X | 45.6 | X | X | X | X | X | 45.6 |
![]() |
X | X | X | X | 6 | 45.322 | X | 38.4 | 19.2 | X | X | X | X | 7 | X | 23.184 |
![]() |
X | 22 | 34 | 4.5 | 37.5 | X | 3.999 | X | 14.4 | X | 16.8 | X | 22.8 | 30 | X | 20.667 |
![]() |
26.67 | 18 | X | X | X | X | X | X | X | X | X | X | X | X | X | 22.335 |
![]() |
X | X | X | X | X | X | X | 45.6 | X | 30 | 19.2 | X | 13.2 | 23 | X | 26.2 |
![]() |
13.335 | X | X | X | X | X | X | X | X | X | X | X | 45.6 | X | X | 29.468 |
![]() |
X | X | X | X | X | X | X | 39.6 | 21.6 | X | 12 | X | X | X | X | 24.4 |
![]() |
48 | X | X | 39 | X | X | X | X | X | X | X | X | X | X | X | 43.5 |
![]() |
X | X | X | X | X | X | X | 39.6 | X | 43.2 | X | X | X | 35 | X | 39.267 |
![]() |
X | X | 16 | 13.5 | 9 | X | X | X | X | X | X | X | X | X | X | 12.833 |
![]() |
X | X | 40 | X | X | X | X | X | X | X | X | X | X | X | X | 40 |
![]() |
X | X | X | X | X | X | X | X | X | 46.8 | X | 46.8 | X | 28 | X | 40.533 |
![]() |
X | X | X | X | X | X | X | 37.2 | 22.8 | X | 37.2 | X | X | X | X | 32.4 |
![]() |
45.339 | X | X | X | X | 47.988 | X | 48 | X | X | X | 31.2 | 13.2 | 45 | X | 38.455 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | TBD |
![]() |
X | 10 | X | X | X | X | X | X | X | X | X | X | X | X | X | 10 |
![]() |
40.005 | 14 | 6 | 12 | 18 | X | 1.333 | X | 8.4 | X | 32.4 | X | X | 10 | X | 15.793 |
![]() |
X | X | X | X | 24 | X | 17.329 | X | 6 | X | 20.4 | X | 28.8 | 17 | X | 18.922 |
![]() |
X | 44 | 14 | 30 | 25.5 | X | 34.658 | X | 12 | X | 28.8 | X | 3.6 | 13 | X | 22.84 |
![]() |
X | X | X | X | X | X | X | 43.2 | X | 40.8 | X | 48 | X | 21 | X | 38.25 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | X | X | 1 | X | 1 |
![]() |
X | X | X | 31.5 | 10.5 | X | 26.66 | X | 32.4 | X | X | X | X | X | X | 25.265 |
![]() |
X | X | 4 | X | X | X | X | 44.4 | X | 48 | X | 31.2 | 8.4 | 33 | X | 28.167 |
![]() |
X | X | 48 | 7.5 | X | 41.323 | 2.666 | X | 2.4 | X | 9.6 | X | 6 | 6 | X | 15.436 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | 36 | 30 | 26 | X | 30.667 |
![]() |
X | X | X | X | X | X | X | X | X | X | X | X | X | 37 | X | 37 |
Historical Placements
Historical Placements start at the VGL3's completion, as that is the earliest time a team could qualify for the leaderboard.
|
|
|